Mobile QR Code QR CODE
Export citation EndNote

References

1 
Alva, G., Liu, L., Huang, X., and Fang, G. (2017) Thermal Energy Storage Materials and Systems for Solar Energy Applications. Renewable and Sustainable Energy Reviews 68, 693-706.DOI
2 
Arutyunov, V. S., and Lisichkin, G. V. (2017) Energy Resources of the 21st Century: Problems and Forecasts. Can Renewable Energy Sources Replace Fossil Fuels. Russian Chemical Reviews 86(8), 777.DOI
3 
Aydın, S., Yazıcı, H., and Baradan, B. (2008) High Temperature Resistance of Normal Strength and Autoclaved High Strength Mortars Incorporated Polypropylene and Steel Fibers. Construction and Building Materials 22(4), 504-512.DOI
4 
Basecq, V., Michaux, G., Inard, C., and Blondeau, P. (2013) Short- term Storage Systems of Thermal Energy for Buildings: A Review. Advances in Building Energy Research 7(1), 66-119.DOI
5 
Bentz, D. P., Peltz, M. A., Duran-Herrera, A., Valdez, P., and Juarez, C. A. (2011) Thermal Properties of High-volume Fly Ash Mortars and Concretes. Journal of Building Physics 34(3), 263-275.DOI
6 
Demirboğa, R. (2007) Thermal Conductivity and Compressive Strength of Concrete Incorporation with Mineral Admixtures. Building and Environment 42(7), 2467-2471.DOI
7 
Fernández, A., Martínez, M., Segarra, M., Martorell, I., and Cabeza, L. F. (2010) Selection of Materials with Potential in Sensible Thermal Energy Storage. Solar Energy Materials and Solar Cells 94(10), 1723-1729.DOI
8 
Gustafsson, S. E. (1991) Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials. Review of Scientific Instruments 62(3), 797-804.DOI
9 
Husem, M. (2006) The Effects of High Temperature on Compressive and Flexural Strengths of Ordinary and High-Performance Concrete. Fire Safety Journal 41(2), 155-163.DOI
10 
Jian, Y., Bai, F., Falcoz, Q., and Wang, Z. (2015) Control Strategy of the Module Concrete Thermal Energy Storage for Parabolic trough Power Plants. Energy Procedia 69, 891-899.DOI
11 
John, E. E., Hale, W. M., and Selvam, R. P. (2011) Development of a High-Performance Concrete to Store Thermal Energy for Concentrating Solar Power Plants. ASME 2011 5th International Conference on Energy Sustainability. August 7-10, 2011. Washington, DC, USA. 523-529.URL
12 
John, E., Hale, M., and Selvam, P. (2013) Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems. Solar Energy 96, 194-204.DOI
13 
Keleş, S. (2011) Fossil Energy Sources, Climate Change, and Alternative Solutions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33(12), 1184-1195.DOI
14 
Laing, D., Lehmann, D., Fiß, M., and Bahl, C. (2009) Test Results of Concrete Thermal Energy Storage for Parabolic trough Power Plants. Journal of Solar Energy Engineering 131(4).DOI
15 
Laing, D., Steinmann, W. D., Tamme, R., and Richter, C. (2006) Solid Media Thermal Storage for Parabolic trough Power Plants. Solar Energy 80(10), 1283-1289.DOI
16 
Leutbecher, T., and Fehling, E. (2012) Tensile Behavior of Ultra- High-Performance Concrete Reinforced with Reinforcing Bars and Fibers: Minimizing Fiber Content. ACI Structural Journal 109(2), 253.URL
17 
Ling, T. C., and Poon, C. S. (2013) Use of Phase Change Materials for Thermal Energy Storage in Concrete: An Overview. Construction and Building Materials 46, 55-62.DOI
18 
Log, T., and Gustafsson, S. E. (1995) Transient Plane Source (TPS) Technique for Measuring Thermal Transport Properties of Building Materials. Fire and Materials 19(1), 43-49.DOI
19 
Martins, F., Felgueiras, C., and Smitková, M. (2018) Fossil Fuel Energy Consumption in European Countries. Energy Procedia 153, 107-111.DOI
20 
Palacios, A., Barreneche, C., Navarro, M. E., and Ding, Y. (2020) Thermal Energy Storage Technologies for Concentrated Solar Power - A Review from a Materials Perspective. Renewable Energy 156, 1244-1265.DOI
21 
Ren, G. M., Wu, H., Fang, Q., and Liu, J. Z. (2018) Effects of Steel Fiber Content and Type on Static Mechanical Properties of UHPCC. Construction and Building Materials 163, 826- 839.DOI
22 
Salomoni, V. A., Majorana, C. E., Giannuzzi, G. M., Miliozzi, A., Di Maggio, R., Girardi, F., and Lucentini, M. (2014) Thermal Storage of Sensible Heat Using Concrete Modules in Solar Power Plants. Solar Energy 103, 303-315.DOI
23 
Sarbu, I., and Sebarchievici, C. (2018) A Comprehensive Review of Thermal Energy Storage. Sustainability 10(1), 191.DOI
24 
Skinner, J. E., Strasser, M. N., Brown, B. M., and Panneer Selvam, R. (2014) Testing of High-Performance Concrete as a Thermal Energy Storage Medium at High Temperatures. Journal of Solar Energy Engineering 136(2).DOI
25 
Steinmann, W. D., and Buschle, J. (2005) Analysis of Thermal Storage Systems Using Modelica. In 4th International Modelica Conference.URL
26 
Tamme, R., Laing, D., and Steinmann, W. D. (2004) Advanced Thermal Energy Storage Technology for Parabolic Trough. Journal of Solar Energy Engineering 126(2), 794-800.DOI
27 
Tian, Y., and Zhao, C. Y. (2013) A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications. Applied Energy 104, 538-553.DOI
28 
Wakili, K. G., Hugi, E., Karvonen, L., Schnewlin, P., and Winnefeld, F. (2015) Thermal Behaviour of Autoclaved Aerated Concrete Exposed to Fire. Cement and Concrete Composites 62, 52-58.DOI
29 
Wang, R., Ren, M., Gao, X., and Qin, L. (2018) Preparation and Properties of Fatty Acids Based Thermal Energy Storage Aggregate Concrete. Construction and Building Materials 165, 1-10.DOI
30 
Xu, X., Wei, Z., Ji, Q., Wang, C., and Gao, G. (2019) Global Renewable Energy Development: Influencing Factors, Trend Predictions and Countermeasures. Resources Policy 63, 101 470.DOI
31 
Zhai, Y., Deng, Z., Li, N., and Xu, R. (2014) Study on Compressive Mechanical Capabilities of Concrete after High Temperature Exposure and Thermo-Damage Constitutive Model. Construction and Building Materials 68, 777-782.DOI