Mobile QR Code QR CODE
Export citation EndNote

References

1 
Allan, S. M., Merritt, B. J., Griffin, B. F., Hintze, P. E., and Shulman, H. S. (2013) High Temperature Microwave Dielectric Properties and Processing of JSC-1AC Lunar Simulant. Journal of Aerospace Engineering 26, 874-881.DOI
2 
Allen, C. C. (1998) Bricks and Ceramics. In Using in Situ Resources for Construction of Planetary Outposts. April 30-May 1, 1998. Albuquerque, New Mexico: Lunar and Planetary Institute. 1-2.URL
3 
Barmatz, M., Steinfeld, D., Anderson, M., and Winterhalter, D. (2014) 3D Microwave Print Head Approach for Processing Lunar and Mars Regolith. In 45th Annual Lunar and Planetary Science Conference 1777, 1137.URL
4 
Bhattacharya, M., and Basak, T. (2016) A Review on the Susceptor Assisted Microwave Processing of Materials. Energy 97, 306-338.DOI
5 
Caprio, L., Demir, A. G., Previtali, B., and Colosimo, B. M. (2020) Determining the Feasible Conditions for Processing Lunar Regolith Simulant Via Laser Powder Bed Fusion. Additive Manufacturing 32, 101029.DOI
6 
Farries, K. W., Visintin, P., Smith, S. T., and van Eyk, P. (2021) Sintered or Melted Regolith for Lunar Construction: State- of-the-art Review and Future Research Directions. Construction and Building Materials 296, 123627.DOI
7 
Fateri, M., Meurisse, A., Sperl, M., Urbina, D., Madakashira, H. K., Govindaraj, S., Imhof, B., Hoheneder, W., Waclavicek, R., Preisinger, C., Podreka, E., Mohamed, M. P., and Weiss, P. (2019a) Solar Sintering for Lunar Additive Manufacturing. Journal of Aerospace Engineering 32(6), 04019101.DOI
8 
Fateri, M., Sottong, R., Kolbe, M., Gamer, J., Sperl, M., and Cowley, A. (2019b) Thermal Properties of Processed Lunar Regolith Simulant. International Journal of Applied Ceramic Technology 16(6), 2419-2428.DOI
9 
Gholami, S., Zhang, X., Kim, Y. J., Kim, Y. R., Cui, B., Shin, H. S., and Lee, J. (2022) Hybrid Microwave Sintering of a Lunar Soil Simulant: Effects of Processing Parameters on Microstructure Characteristics and Mechanical Properties. Materials & Design 220, 110878.DOI
10 
Goulas, A., Binner, J. G., Engstrøm, D. S., Harris, R. A., and Friel, R. J. (2019) Mechanical Behaviour of Additively Manufactured Lunar Regolith Simulant Components. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(8), 1629- 1644.DOI
11 
Goulas, A., Binner, J. G., Harris, R. A., and Friel, R. J. (2017) Assessing Extraterrestrial Regolith Material Simulants for In-situ Resource Utilisation Based 3D Printing. Applied Materials Today 6, 54-61.DOI
12 
Hintze, P. E., and Quintana, S. (2013) Building a Lunar or Martian Launch Pad with in Situ Materials: Recent Laboratory and Field Studies. Journal of Aerospace Engineering 26(1), 134-142.DOI
13 
Hong, S., and Shin, H. S. (2018) Trend Analysis of Lunar Exploration Missions for Lunar Base Construction. Journal of Korea Academia-Industrial Cooperation Society 19(7), 144- 152. (In Korean)DOI
14 
Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y., and Zhao, Z. (2022) Research Progress on Lunar and Martian Concrete. Construction and Building Materials 343, 128117.DOI
15 
Imhof, B., Sperl, M., Urbina, D. A., Weiss, P., Preisingere, C., Waclavicek, R., Hoheneder, W., Meurisse, A., Fateri, M., Gobert, T., Peer, M., Govindaraj, S., Madakashira, H., and Salini, J. (2018) Using Solar Sintering to Build Infrastructure on the Moon Latest Advancements in the Regolight Project. In 69th International Astronautical Congress (IAC). Bremen, Germany.URL
16 
Jin, H., Lee, J., Ryu, B. H., Shin, H. S., and Kim, Y. J. (2021) The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering. Journal of the Korean Geotechnical Society 37(2), 5-17. (In Korean)DOI
17 
Kim, K. J. (2017) A Research Trend on Lunar Resource and Lunar Base. The Journal of the Petrological Society of Korea 26(4), 373-384. (In Korean)DOI
18 
Kim, Y. J., Ryu, B. H., Jin, H., Lee, J., and Shin, H. S. (2021) Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant. Ceramics International 47(19), 26891-26897.DOI
19 
Lim, S., Bowen, J., Degli-Alessandrini, G., Anand, M., Cowley, A., and Levin Prabhu, V. (2021) Investigating the Microwave Heating Behaviour of Lunar Soil Simulant JSC-1A at Different Input Powers. Scientific Reports 11(1), 2133.DOI
20 
Meek, T. T., Vaniman, D. T., Blake, R. D., and Godbole, M. J. (1987) Sintering of Lunar Soil Simulants Using 2.45 GHz Microwave Radiation. the Lunar and Planetary Science Conference 18, 635.URL
21 
Meek, T. T., Vaniman, D. T., Cocks, F. H., and Wright, R. A. (1985) Microwave Processing of Lunar Materials: Potential Applications. In Lunar Bases and Space Activities of the 21st Century. Houston, TX: Lunar and Planetary Institute. 1-479.URL
22 
Meurisse, A., Makaya, A., Willsch, C., and Sperl, M. (2018) Solar 3D Printing of Lunar Regolith. Acta Astronautica 152, 800-810.DOI
23 
Nakamura, T., and Smith, B. (2011) Solar Thermal System for Lunar ISRU Applications: Development and Field Operation at Mauna Kea, HI. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 5759-5774.DOI
24 
Sim, E. (2016) Current Development Trends in Lunar Explorers Around the World. Aeronautical and Space Sciences 44(8), 741-757. (In Korean)URL
25 
Sitta, L. A., and Lavagna, M. (2018) 3D Printing of Moon Highlands Regolith Simulant. In International Astronautical Congress: IAC Proceedings, International Astronautical Federation.URL
26 
Taylor, L. A., and Meek, T. T. (2005) Microwave Sintering of Lunar Soil: Properties, Theory, and Practice. Journal of Aerospace Engineering 18(3), 188-196.DOI
27 
Urbina, D., Madakashira, H., Salini, J., Govindaraj, S., Bjoerstad, R., Gancet, J., Sperl, M., Meurisse, A., Fateri, M., Imhof, B., Hoheneder, W., Weiss, P., Peer, M. M., and Prodeka, E. (2017) Robotic Prototypes for the Solar Sintering of Regolith on the Lunar Surface Developed within the Regolight Project. In 68th International Astronautical Congress (IAC). Adelaide, Australia.URL
28 
Vaniman, D. T., Meek, T. T., and Blake, R. D. (1986) Fusing Lunar Materials with Microwave Energy. Part II: Melting of a Simulated Glassy Apollo 11 soil. In Lunar and Planetary Science Conference 17, 911-912.URL
29 
Wright, R. A., Cocks, F. H., Vaniman, D. T., Blake, R. D., and Meek, T. T. (1986) Fusing Lunar Materials with Microwave Energy. Part I: Studies of Doping Media. In Lunar and Planetary Science XVII 17, 958-959.URL
30 
Xu, J., Sun, X., Cao, H., Tang, H., Ma, H., Song, L., Li, X., Duan, X., and Liu, J. (2019) 3D Printing of Hypothetical Brick by Selective Laser Sintering Using Lunar Regolith Simulant and Ilmenite Powders. In 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology. 10842, 38-48.URL
31 
Zhang, P., Dai, W., Niu, R., Zhang, G., Liu, G., Liu, X., Bo, Z., Wang, Z., Zheng, H., Liu, C., Yang, H., Bai, Y., Zhang, Y., Yan, D., Zhou, K., and Gao, M. (2023) Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Space: Science & Technology 3, 0037.DOI