Mobile QR Code QR CODE
Export citation EndNote

References

1 
Balonis, M., Lothenbach, B., Le Saout, G., and Glasser, F. P. (2010) Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems. Cement and Concrete Research 40(7), 1009-1022.DOI
2 
Chung, S.-Y., Abd Elrahman, M., Sikora, P., Rucinska, T., Horszczaruk, E., and Stephan, D. (2017) Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-based Approaches. Materials 10(12), 1354.DOI
3 
Chung, S.-Y., Oh, S.-E., Jo, S. S., Lehmann, C., Won, J., and Abd Elrahman, M. (2023) Microstructural Investigation of Mortars Incorporating Cockle Shell and Waste Fishing Net. Case Studies in Construction Materials 18, e01719.DOI
4 
Dash, M. K., Patro, S. K., and Rath, A. K. (2016) Sustainable use of Industrial-waste as Partial Replacement of Fine Aggregate for Preparation of Concrete - A Review. International Journal of Sustainable Built Environment 5(2), 484-516.DOI
5 
Duan, J., Wilson, F., Graham, N., and Tay, J. H. (2003) Adsorption of Humic Acid by Powdered Activated Carbon in Saline Water Conditions. Desalination 151(1), 53-66.DOI
6 
Eziefula, U. G., Ezeh, J. C., and Eziefula, B. I. (2018) Properties of Seashell Aggregate Concrete: A Review. Construction and Building Materials 192, 287-300.DOI
7 
Jović, M., Mandić, M., Šljivić-Ivanović, M., and Smičiklas, I. (2019) Recent Trends in Application of Shell Waste from Mariculture. Studia Marina 32(1), 47-62.URL
8 
KATS (2017) Standard Test Method for Analysis of Chloride in Concrete and Concrete Raw Materials (KS F 2713). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
9 
KATS (2022) Testing Method for Compressive Strength of Hydraulic Cement Mortars (KS L 5105). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA), 1-6. (In Korean)URL
10 
Kirthika, S. K., Surya, M., and Singh, S. K. (2019) Effect of Clay in Alternative Fine Aggregates on Performance of Concrete. Construction and Building Materials 228, 116811.DOI
11 
Lee, Y. S., Chen, Z. X., and Lee, H. S. (2017) Performance Evaluation of Chloride and Sulfate Removal Using Anion Exchange Resin in Saturated Ca(OH)2 Solutions. Journal of the Korea Institute for Structural Maintenance and Inspection 21(2), 146-154. (In Korean)URL
12 
Lertwattanaruk, P., Makul, N., and Siripattarapravat, C. (2012) Utilization of Ground Waste Seashells in Cement Mortars for Masonry and Plastering. Journal of Environmental Management 111, 133-141.DOI
13 
Liu, P., Chen, Y., Yu, Z., and Lu, Z. (2019) Effect of Sulfate Solution Concentration on the Deterioration Mechanism and Physical Properties of Concrete. Construction and Building Materials 227, 116641.DOI
14 
Liu, W., Du, H., Li, Y., Yi, P., Luo, Y., Tang, L., and Xing, F. (2023) Effects of Chloride Content on Early Hydration Performance of Cement Pastes. Materials Today Communications 35, 106257.DOI
15 
Mackenzie, F. T., Duxbury, A. C., and Byrne, R. H. (2023) Seawater. Encyclopedia Britannica, 1 Dec. 2023, Accessed 27 December 2023.URL
16 
Mageswari, M., and Vidivelli, D. B. (2010) The Use of Sheet Glass Powder as Fine Aggregate Replacement in Concrete. The Open Civil Engineering Journal 4(1), 65-71.DOI
17 
Mehta, P. K., and Monteiro, P. J. (2014) Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education.URL
18 
Muthusamy, K., Tukimat, N. N. A., Sarbini, N. N., and Zamri, N. (2016) Exploratory Study on the Use of Crushed Cockle Shell as Partial Sand Replacement in Concrete. International Journal of Engineering Research and General Science 4(2), 67-71.URL
19 
Neto, J. D. S. A., Angeles, G., and Kirchheim, A. P. (2021) Effects of Sulfates on the Hydration of Portland Cement - A Review. Construction and Building Materials 279, 122428.DOI
20 
Neville, A. M., and Brooks, J. J. (1987) Concrete Technology (Vol. 438). England: Longman Scientific & Technical.URL
21 
Oh, S.-E., Chung, S.-Y., Kim, K., and Han, S. H. (2024) Comparative Analysis of the Effects of Waste Shell Aggregates on the Material Properties of Cement Mortars. Construction and Building Materials 412, 134887.DOI
22 
Peduzzi, P. (2014) Sand, Rarer than One Thinks. Environmental Development 11, 208-218.URL
23 
Qu, T., Yao, X., Owens, G., Gao, L., and Zhang, H. (2022) A Sustainable Natural Clam Shell Derived Photocatalyst for the Effective Adsorption and Photodegradation of Organic Dyes. Scientific Reports 12(1), 2988.DOI
24 
Rashad, A. (2016) Cementitious Materials and Agricultural Wastes as Natural Fine Aggregate Replacement in Conventional Mortar and Concrete. Journal of Building Engineering 5, 119-141.DOI
25 
Shetty, M. S., and Jain, A. K. (2019) Concrete Technology (Theory and Practice). 8e. S. Chand Publishing.URL
26 
Shi, X., Xie, N., Fortune, K., and Gong, J. (2012) Durability of Steel Reinforced Concrete in Chloride Environments: An Overview. Construction and Building Materials 30, 125-138.DOI
27 
Summers, R. S., and Roberts, P. V. (1988) Activated Carbon Adsorption of Humic Substances: I. Heterodisperse Mixtures and Desorption. Journal of Colloid and Interface Science 122(2), 367-381.DOI
28 
Varhen, C., Carrillo, S., and Ruiz, G. (2017) Experimental Investigation of Peruvian Scallop Used as Fine Aggregate in Concrete. Construction and Building Materials 136, 533-540.DOI
29 
Wajima, T., Shimizu, T., Yamato, T., and Ikegami, Y. (2010) Removal of NaCl from Seawater Using Natural Zeolite. Toxicological & Environmental Chemistry 92(1), 21-26.DOI
30 
Yang, E. I., Kim, M. Y., Park, H. G., and Yi, S. T. (2010) Effect of Partial Replacement of Sand with Dry Oyster Shell on the Long-term Performance of Concrete. Construction and Building Materials 24(5), 758-765.DOI