Mobile QR Code QR CODE
Export citation EndNote

References

1 
ACI Committee 211.2 (1998) Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2- 98). Farmington Hills, MI: American Concrete Institute (ACI).URL
2 
Altun, F., and Aktaş, B. (2013) Investigation of Reinforced Concrete Beams Behavior of Steel Fiber Added Lightweight Concrete. Construction and Building Materials 38, 575-581.DOI
3 
Carrillo, J., Vargas, J. D., and Alcocer, S. M. (2021) Model for Estimating the Flexural Performance of Concrete Reinforced with Hooked End Steel Fibers Using Three-Point Bending Tests. Structural Concrete 22(3), 1760-1783.DOI
4 
CEB-FIP (2013) fib Model Code for Concrete Structures 2010 (fib 2010). Lausanne, Switzerland: International Federation for Structural Concrete (fib), Comite Euro-International du Beton (CEB).URL
5 
CEN (2005) Test Method for Metallic Fibre Concrete - Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual) (EN 14651:2005). London, UK: European Committee for Standardization (CEN), British Standards Institute (BSI).URL
6 
Gao, J., Sun, W., and Morino, K. (1997) Mechanical Properties of Steel Fiber-Reinforced, High-Strength, Lightweight Concrete. Cement and Concrete Composites 19(4), 307-313.DOI
7 
Gondokusumo, G. S., Venkateshwaran, A., Tan, K. H., and Liew, J. Y. R. (2021) Unified Equations to Predict Residual Flexural Tensile Strength of Lightweight Steel Fiber-Reinforced Concrete. Structural Concrete 22(4), 2202-2222.DOI
8 
Hassanpour, M., Shafigh, P., and Mahmud, H. B. (2012) Lightweight Aggregate Concrete Fiber Reinforcement - A Review. Construction and Building Materials 37, 452-461.DOI
9 
Kaplan, G., Bayraktar, O. Y., and Memis, S. (2021) Effect of High Volume Fly Ash and Micro-Steel Fiber on Flexural Toughness and Durability Properties in Self-Compacting Lightweight Mortar (SCLM). Construction and Building Materials 307, 124877.DOI
10 
KATS (2016a) Standard Test Method for Air Content of Fresh Concrete by the Pressure Method (Air Receiver Method) (KS F 2421). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
11 
KATS (2016b) Standard Test Method for Flexural Strength of Concrete (KS F 2408). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
12 
KATS (2021) Portland Cement (KS L 5201). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
13 
KATS (2022a) Test Method for Concrete Slump (KS F 2402). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
14 
KATS (2022b) Test Method for Compressive Strength of Concrete (KS F 2405). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
15 
KCI (2021) Concrete Structure Usability Design Standards (KDS 14 20 30: 2021). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT), Korea Concrete Institute (KCI). (In Korean)URL
16 
Kim, H. Y., Yang, K. H., and Lee, H. J. (2023) Toughness Performance of Lightweight Aggregate Concrete Reinforced with Steel Fibers. ACI Materials Journal 120(5), 3-14.DOI
17 
Lee, H. J., Kim, H. Y., Yang, K. H., and Lee, J., Y. (2022) Evaluation on Compressive Strength and Toughness Index of Lightweight Aggregate Concrete with Expanded Waste- glass Particles and Micro steel Fibers. Journal of the Architectural Institute of Korea 38(5), 251-258. (In Korean)DOI
18 
Li, V. C., Mihashi, H., Wu, H. C., Alwan, J., Brincker, R., Horii, H., Leung, C., Maalej, M., and Stang, H. (1996) Micromechanical models of mechanical response of HPFRCC. In High Performance Fibre Reinforced Cement Composites, Michigan 11-14 June 1995. Ann Arbor: Proceedings of the 2nd International Workshop. 43-100.URL
19 
Moon, K. T., Park, S. Y., and Kim, S. E. (2019) Compressive Strength of Concrete Due to Moisture Conditions of Recycled Coarse Aggregates and Curing Conditions. Journal of the Korean Society of Civil Engineers 39(4), 485-492. (In Korean)DOI
20 
Oh, N. K., Yang, K. H., and Moon, J. H. (2022) Flexural Ductility of Lightweight Aggregate Concrete Shear Walls with Boundary Element. Journal of the Korea Concrete Institute 34(4), 345-351. (In Korean)DOI
21 
Sim, J. I. and Yang, K. H. (2012) Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete. Journal of the Korea Concrete Institute 24(3), 333-340. (In Korean)DOI
22 
Son, M. J., Kim, G. Y., Lee, S. K., Kim, H. S., and Nam, J. S. (2021) Tensile Properties of Hybrid Fiber Reinforced Cement Composite According to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate. Journal of the Korea Institute for Structural Maintenance and Inspection 25(3), 31-39. (In Korean)URL
23 
Venkateshwaran, A., Tan, K. H., and Li, Y. (2018) Residual Flexural Strengths of Steel Fiber Reinforced Concrete with Multiple Hooked-End Fibers. Structural Concrete 19(2), 352-365.DOI
24 
Yang, K. H. (2011) Tests on Concrete Reinforced with Hybrid of Monolithic Steel and Polyvinyl Alcohol Fibers. ACI Materials Journal 108(6), 664-672.DOI