Mobile QR Code QR CODE
Export citation EndNote

References

1 
Ahmad, S. (2003) Reinforcement Corrosion in Concrete Structures, Its Monitoring and Service Life Prediction––A Review. Cement and Concrete Composites 25(4-5), 459-471.DOI
2 
Andrade, C., and Alonso, C. (2001) On-Site Measurements of Corrosion Rate of Reinforcements. Construction and Building Materials 15(2), 141-145.DOI
3 
Angst, U., Elsener, B., Larsen, C. K., and Vennesland, Ø. (2009) Critical Chloride Content in Reinforced Concrete—A Review. Cement and Concrete Research 39(12), 1122-1138.DOI
4 
Ann, K. Y., and Song, H. W. (2007) Chloride Threshold Level for Corrosion of Steel in Concrete. Corrosion Science 49(11), 4113-4133.DOI
5 
Arya, C., Buenfeld, N. R., and Newman, J. B. (1990) Factors Influencing Chloride-Binding in Concrete. Cement and Concrete Research 20(2), 291-300.DOI
6 
ASTM Standard C876-91 (1994) Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. Annual Book of ASTM Standards, 03.02, 432.URL
7 
Christensen, B. J., Coverdale, T., Olson, R. A., Ford, S. J., Garboczi, E. J., Jennings, H. M., and Mason, T. O. (1994) Impedance Spectroscopy of Hydrating Cement‐Based Materials: Measurement, Interpretation, and Application. Journal of the American Ceramic Society 77(11), 2789-2804.DOI
8 
Duarte, R. G., Castela, A. S., Neves, R., Freire, L., and Montemor, M. F. (2014) Corrosion Behavior of Stainless Steel Rebars Embedded in Concrete: An Electrochemical Impedance Spectroscopy Study. Electrochimica Acta 124, 218-224.DOI
9 
Duffó, G. S., Farina, S. B., and Giordano, C. M. (2009) Characterization of Solid Embeddable Reference Electrodes for Corrosion Monitoring in Reinforced Concrete Structures. Electrochimica Acta 54(3), 1010-1020.DOI
10 
Encinas-Sánchez, V., De Miguel, M. T., Lasanta, M. I., García- Martín, G., and Pérez, F. J. (2019) Electrochemical Impedance Spectroscopy (EIS): An Efficient Technique for Monitoring Corrosion Processes in Molten Salt Environments in CSP Applications. Solar Energy Materials and Solar Cells 191, 157-163.DOI
11 
Figueira, R. B. (2017) Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review. Applied Sciences 7(11), 1157.DOI
12 
Jang, B. S., Cha, H. Y., Ahn, J. H., and Kim, B. S. (2009) Case Study of Corrosion Monitoring Sensor for Marine RC Structure. Proceeding of KCI 2009 Spring Conference. 7-8 May 2009. Busan. Korea; Korea Concrete Institute (KCI). 21(1), 263-264. (In Korean)URL
13 
Karthick, S. P., Muralidharan, S., Saraswathy, V., and Thangavel, K. (2014) Long-Term Relative Performance of Embedded Sensor and Surface Mounted Electrode for Corrosion Monitoring of Steel in Concrete Structures. Sensors and Actuators B: Chemical 192, 303-309.DOI
14 
Khan, M. A. M., Kim, J. K., Yee, J. J., and Kee, S. H. (2022) Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System. Journal of the Korea Institute for Structural Maintenance and Inspection, 26(6), 82-92. (In Korean)DOI
15 
Kim, H. S., Lee, C. Y., Cheong, H. M., and Ahn, T. S. (2008) Application of Long-Term Monitoring Sensor for Detection of Steel Corrosion in RC Structure under Marine Environment. Conference of Korea Society of Civil Engineers, 2645-2648. (In Korean)URL
16 
Kim, J. K., Kee, S. H., and Yee, J. J. (2018) Corrosion Monitoring of Reinforcing Bars in Cement Mortar Exposed to Seawater Immersion-and-Dry Cycles. Journal of the Korea Institute for Structural Maintenance and Inspection 22(4), 10-18. (In Korean)DOI
17 
Kim, J. K., Kee, S. H., Futalan, C. M., and Yee, J. J. (2020(b)) Corrosion Monitoring of Reinforced Steel Embedded in Cement Mortar under Wet-And-Dry Cycles by Electrochemical Impedance Spectroscopy. Sensors 20, 199.DOI
18 
Kim, J. K., Kee, S. H., Yee, J. J., and Kim, H. K. (2020(a)) Electrochemical Impedance Properties of Corroded Reinforcing Steel in Concrete Dominated by Diffusion of Corrosive Products. Journal of the Korean Society for Railway 23(12), 1206-1218. (In Korean)DOI
19 
Lazanas, A. C., and Prodromidis, M. I. (2023) Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au 3(3), 162-193.DOI
20 
Mancio, M., Zhang, J., Monteiro, P., and Engineer, C. C. (2004) Nondestructive Surface Measurement of Corrosion of Reinforcing Steel in Concrete. Canadian Civil Engineer 21(2), 12-14.URL
21 
MOLIT (2024) Press Release on ‘Adding Safety to Everyday Life’. Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT). https://www.molit.go.kr/USR/NEWS/dtl.jsp?lcmspage=93&id=95089361 (Accessed 07 Jan. 2025) (In Korean)URL
22 
Nishikata, A. (1999) Impedance Characteristics of Corrosion Systems and Corrosion Monitoring. Zairyo-to-Kankyo 48(11), 686-692.DOI
23 
Ribeiro, D. V., and Abrantes, J. C. C. (2016) Application of Electrochemical Impedance Spectroscopy (EIS) to Monitor the Corrosion of Reinforced Concrete: A New Approach. Construction and Building Materials 111, 98-104.DOI
24 
Sagüés, A. A., Kranc, S. C., and Moreno, E. I. (1995) The Time- Domain Response of a Corroding System with Constant Phase Angle Interfacial Component: Application to Steel in Concrete. Corrosion Science 37(7), 1097-1113.DOI
25 
Sugimoto, K. (1999) Fundamentals of Theory and Analysis of Electrochemical Impedance Spectroscopy. Zairyo-to-Kankyo 48(11), 673-680.DOI
26 
Woo, S. Y., Kim, J. K., Yee, J. J., and Kee, S. H. (2022) Monitoring of Concrete Deterioration Caused by Steel Corrosion Using Electrochemical Impedance Spectroscopy (EIS). Journal of the Korea Institute of Building Construction 22(6), 651-662. (In Korean)DOI
27 
Woo, S. Y., Kim, J. K., Yee, J. J., and Kee, S. H. (2023) Evaluation of Chloride-Induced Steel Corrosion and Concrete Deterioration Using Electrochemical Spectroscopy (EIS). Journal of the Architectural Institute of Korea 39(12), 269-278. (In Korean)DOI
28 
Xu, C., Li, Z., and Jin, W. (2013) A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete. Sensors 13(10), 13258-13275.DOI