Mobile QR Code QR CODE
Export citation EndNote

References

1 
Abedini M., Zhang C., Mehrmashhadi J., Akhlaghi E., 2020, Comparison of ALE, LBE and Pressure Time History Methods to Evaluate Extreme Loading Effects in RC Column, Structures, Vol. 28, pp. 456-466DOI
2 
Bohanek V., Tumara B. S., Serene C. H. Y., Sućeska M., 2023, Shock Initiation and Propagation of Detonation in ANFO, Energies, Vol. 16, No. 4, pp. 1744DOI
3 
Choi J. H., Choi S. J., Lee T. H., Kim J. H., 2019, Experimental Evaluation of Internal Blast Resistance Behavior of Reinforced Concrete Tubular Structures under Internal Blast Loading, Journal of the Korea Concrete Institute, Vol. 31, No. 4, pp. 319-330, (In Korean)DOI
4 
Fan Y., Zhao Y., Yang G., Leng Z., Ding S., Wang L., Tian B., 2025, Non-Ideal Detonation Performance of Engineering Explosive and Its Influence on Rock Fragmentation Under Different Blasting Conditions, Rock Mechanics and Rock Engineering, Vol. 58, pp. 5003-5022DOI
5 
Fay S. D., 2020, Characterisation of Blast Loading for Shallow Buried Explosives, University of Sheffield, Sheffield, UK, Ph.D. ThesisGoogle Search
6 
Jayasinghe L. B., Zhou H. Y., Goh A. T. C., Zhao Z. Y., Gui Y. L., 2017, Pile Response Subjected to Rock Blasting Induced Ground Vibration Near Soil-Rock Interface, Computers and Geotechnics, Vol. 82, pp. 1-15DOI
7 
Johansson L., 2011, Numerical Study of Non-Ideal Explosive Detonation, Lulea University of Technology, Master’s ThesisGoogle Search
8 
Jouguet E., 1905, On the Propagation of Chemical Reactions in Gases, Journal de Mathématiques Pures et Appliquées, Vol. 1, pp. 347-425Google Search
9 
Kim Y. E., Lee K. H., Shin J. U., 2024, Proposing Improvements for Blast Resistance Performance of Reinforced Concrete Columns Based on Strength and Ductility Analysis, Journal of the Korea Concrete Institute, Vol. 36, No. 4, pp. 337-345, (In Korean)DOI
10 
Kittel D. E., Cummock N. R., Son S. F., 2016, Reactive Flow Modeling of Small Scale Detonation Failure Experiments for a Baseline Non-Ideal Explosive, Journal of Applied Physics, Vol. 120, No. 6, pp. 064901DOI
11 
Lee E. L., Tarver C. M., 1980, Phenomenological Model of Shock Initiation in Heterogeneous Explosives, Physics of Fluids, Vol. 23, No. 12, pp. 2362-2372DOI
12 
Lee E. L., Horning H. C., Kury J. W., 1968, Adiabatic Expansion of High Explosives Detonation Products, Lawrence Livermore National Laboratory, Livermore, CA, USA, No. UCRL 50422Google Search
13 
2020, LS-DYNA: User’s ManualsLSTC, , Livermore Software Technology Corporation (LSTC), Livermore, USGoogle Search
14 
Minchinton A., 2015, On the Influence of Fundamental Detonics on Blasting Practice, In 11th International Symposium on Rock Fragmentation by Blasting, pp. 41-54, The Australasian Institute of Mining and Metallurgy (AusIMM), Carlton, AustraliaGoogle Search
15 
Price M. A., Ghee A. H., 2009, Modeling for Detonation and Energy Release from Peroxides and Non-Ideal Improvised Explosives, Central European Journal of Energetic Materials, Vol. 6, No. 3-4, pp. 239-254Google Search
16 
Rigby S. E., Knighton R., Clarke S. D., Tyas A., 2020, Reflected Near-Field Blast Pressure Measurements Using High Speed Video, Experimental Mechanics, Vol. 60, pp. 875-888DOI
17 
Sanchidrian J. A., Castedo R., Lopez L. M., Segarra P., Santos A. P., 2015, Determination of the JWL Constants for ANFO and Emulsion Explosives from Cylinder Test Data, Central European Journal of Energetic Materials, Vol. 12, No. 2, pp. 177-194Google Search
18 
Shin H. S., Kim S. W., Moon J. H., Park G. K., 2024, Numerical Analysis of Blast Behavior for Non-Ideal Explosive ANFO in Shock-Tube Test, International Journal of Concrete Structures and Materials, Vol. 18, No. 4, pp. 741-757DOI
19 
Stimac B., Skrlec V., Dobrilovic M., Suceska M., 2021, Numerical Modelling of Non-Ideal Detonation in ANFO Explosives Applying Wood-Kirkwood Theory Coupled with EXPLO5 Thermochemical Code, Defence Technology, Vol. 17, No. 5, pp. 1740-1752DOI
20 
Tham C. Y., 2009, Numerical Simulation on The Interaction of Blast Waves with a Series of Aluminum Cylinders at Near-Field, International Journal of Impact Engineering, Vol. 36, No. 1, pp. 122-131DOI
21 
Yi C., Nyberg U., Johansson D., 2018, Calibration and Validation of Reactive Flow Model Parameters for an Emulsion Explosive, In 12th International Symposium on Rock Fragmentation by Blasting, pp. 459-466, The Australasian Institute of Mining and Metallurgy (AusIMM), Carlton, AustraliaGoogle Search
22 
Yi C., Nyberg U., Johansson D., Schunnesson H., 2020, Ignition and Growth Reactive Flow Model for Aluminized Emulsion Explosive, In 46th Annual Conference on Explosives and Blasting Technique, pp. 1-10, International Society of Explosives Engineers (ISEE), Lexington, USGoogle Search
23 
Zeldovich Y. B., 1940, On the Theory of the Propagation of Detonation in Gaseous Systems, Journal of Experimental and Theoretical Physics (JETP), Vol. 10, No. 5, pp. 542-568Google Search
24 
Zhang Z. X., 2016, Rock Fracture and Blasting – Theory and Applications, pp. 39-66, Elsevier, Amsterdam, Netherlands, Part I, Stress Waves and Shock WavesGoogle Search