Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Begnudelli, L., Valiani, A. and Sanders, B. F. (2010). “A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends.” Adv. Water Resour., Vol. 33, pp. 17-33.10.1016/j.advwatres.2009.10.004Begnudelli, L., Valiani, A. and Sanders, B. F. (2010). “A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends.” Adv. Water Resour., Vol. 33, pp. 17-33.DOI
2 
Bernard, R. S. and Schneider, M. L. (1992). Depth-averaged numerical modeling for curved channels, Technical Report HL-92-9, Waterways Experiment Station, US Army Corps of Engineers.Bernard, R. S. and Schneider, M. L. (1992). Depth-averaged numerical modeling for curved channels, Technical Report HL-92-9, Waterways Experiment Station, US Army Corps of Engineers.Google Search
3 
Chang, Y. C. (1971).  Lateral mixing in meandering channels, Ph.D. Thesis, Univ. of Iowa.Chang, Y. C. (1971).  Lateral mixing in meandering channels, Ph.D. Thesis, Univ. of Iowa.Google Search
4 
Flokstra, C. (1977). “The closure problem for depth-averaged two-dimensional flows.” Proc. 18th IAHR, pp. 247-256.Flokstra, C. (1977). “The closure problem for depth-averaged two-dimensional flows.” Proc. 18th IAHR, pp. 247-256.Google Search
5 
Ghamry, H. K. (1999). Two dimensional vertically averaged and moment equations for shallow free surface flows, Ph.D. Thesis, Univ. of Alberta.Ghamry, H. K. (1999). Two dimensional vertically averaged and moment equations for shallow free surface flows, Ph.D. Thesis, Univ. of Alberta.Google Search
6 
Ghamry, H. K. and Steffler, P. M. (2002). “Effect of applying different distribution shapes for velocities and pressure on simulation of curved open channels.” J. Hydraul. Engrg., Vol. 128, No. 11, pp. 969-982.10.1061/(ASCE)0733-9429(2002)128:11(969)Ghamry, H. K. and Steffler, P. M. (2002). “Effect of applying different distribution shapes for velocities and pressure on simulation of curved open channels.” J. Hydraul. Engrg., Vol. 128, No. 11, pp. 969-982.DOI
7 
Ghamry, H. K. and Steffler, P. M. (2005). “Two-dimensional depth-averaged modeling of flow in curved open channels.” J. Hydraul. Res., Vol. 43, No. 1, pp. 44-55.10.1080/00221680509500110Ghamry, H. K. and Steffler, P. M. (2005). “Two-dimensional depth-averaged modeling of flow in curved open channels.” J. Hydraul. Res., Vol. 43, No. 1, pp. 44-55.DOI
8 
Ghanem, A. H. M. (1995). Two-dimensional finite element modeling of flow in aquatic habitats, Ph.D. Dissertation, University of Alberta, Edmonton, Alberta.Ghanem, A. H. M. (1995). Two-dimensional finite element modeling of flow in aquatic habitats, Ph.D. Dissertation, University of Alberta, Edmonton, Alberta.Google Search
9 
Hicks, F. E., Jin, Y. C. and Steffler, P. M. (1990). “Flow near sloped bank in curved channel.” J. Hydraul. Engrg., Vol. 116, No. 1, pp. 55-70.10.1061/(ASCE)0733-9429(1990)116:1(55)Hicks, F. E., Jin, Y. C. and Steffler, P. M. (1990). “Flow near sloped bank in curved channel.” J. Hydraul. Engrg., Vol. 116, No. 1, pp. 55-70.DOI
10 
Hsieh, T. Y. and Yang, J. C. (2003). “Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation.” J. Hydraul. Engrg., Vol. 129, No. 8, pp. 597-612.10.1061/(ASCE)0733-9429(2003)129:8(597)Hsieh, T. Y. and Yang, J. C. (2003). “Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation.” J. Hydraul. Engrg., Vol. 129, No. 8, pp. 597-612.DOI
11 
Hughes, T. J. R. and Brooks, A. (1979). A multidimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, T. J. R. Hughes, eds., AMD Vol. 34, New York, pp. 19-35.Hughes, T. J. R. and Brooks, A. (1979). A multidimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, T. J. R. Hughes, eds., AMD Vol. 34, New York, pp. 19-35.Google Search
12 
Jia, Y. and Wang, S. S. Y. (1998). “Numerical model for channel flow and morphological change studies.” J. Hydraul. Engrg., Vol. 125, No. 9, pp. 924-933.10.1061/(ASCE)0733-9429(1999)125:9(924)Jia, Y. and Wang, S. S. Y. (1998). “Numerical model for channel flow and morphological change studies.” J. Hydraul. Engrg., Vol. 125, No. 9, pp. 924-933.DOI
13 
Kikkawa, H., Ikeda, S. and Kitagawa, A. (1976). “Flow and bend topography in curved open channels.” J. Hydraul. Engrg., Div., Vol. 102, No. 9, pp. 1327-1342.Kikkawa, H., Ikeda, S. and Kitagawa, A. (1976). “Flow and bend topography in curved open channels.” J. Hydraul. Engrg., Div., Vol. 102, No. 9, pp. 1327-1342.Google Search
14 
Kim, T. B. and Choi, S. U. (2009). “Simulation of flow characteristics in a Kinoshita meandering channel using the depth-integrated 2D numerical model.” Proc.35th KSCE conference, pp. 691-694 (in Korean).Kim, T. B. and Choi, S. U. (2009). “Simulation of flow characteristics in a Kinoshita meandering channel using the depth-integrated 2D numerical model.” Proc.35th KSCE conference, pp. 691-694 (in Korean).Google Search
15 
Kim, T. B., Choi, B. W. and Choi, S. U. (2009). “A depth-integrated numerical model considering the secondary flows in the channel bend.” Proc.2009 KWRA conference, pp. 555-559 (in Korean).Kim, T. B., Choi, B. W. and Choi, S. U. (2009). “A depth-integrated numerical model considering the secondary flows in the channel bend.” Proc.2009 KWRA conference, pp. 555-559 (in Korean).Google Search
16 
Maynord, S. T. (1996). Open-channel velocity prediction using STREMR model, Technical Report HL-96-5, Waterways Experiment Station, US Army Corps of Engineers.Maynord, S. T. (1996). Open-channel velocity prediction using STREMR model, Technical Report HL-96-5, Waterways Experiment Station, US Army Corps of Engineers.Google Search
17 
Molls, T. and Chaudhry, M. H. (1995). “Depth-averaged open-channel flow model.” J. Hydraul. Engrg., Vol. 121, No. 6, pp. 453-465.10.1061/(ASCE)0733-9429(1995)121:6(453)Molls, T. and Chaudhry, M. H. (1995). “Depth-averaged open-channel flow model.” J. Hydraul. Engrg., Vol. 121, No. 6, pp. 453-465.DOI
18 
Odgaard, A. J. (1986). “Meander flow model. I: Development.” J. Hydraul. Engrg., Vol. 112, No. 12, pp. 1117-1136.10.1061/(ASCE)0733-9429(1986)112:12(1117)Odgaard, A. J. (1986). “Meander flow model. I: Development.” J. Hydraul. Engrg., Vol. 112, No. 12, pp. 1117-1136.DOI
19 
Rozovskii, I. L. (1961). Flow of Water in Bends of Open Channels, Israel Program for Scientific Translations.Rozovskii, I. L. (1961). Flow of Water in Bends of Open Channels, Israel Program for Scientific Translations.Google Search
20 
Shiono, K. and Muto, Y. (1998). “Complex mechanisms in compound meandering channel with overbank flow.” J. Fluid Mech., Vol. 326, pp. 221-261.10.1017/S0022112098002869Shiono, K. and Muto, Y. (1998). “Complex mechanisms in compound meandering channel with overbank flow.” J. Fluid Mech., Vol. 326, pp. 221-261.DOI
21 
Song, C. G. and Seo, I. W. (2012). “Numerical simulation of convection-dominated flow using SU/PG scheme.” Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 175-183 (in Korean).Song, C. G. and Seo, I. W. (2012). “Numerical simulation of convection-dominated flow using SU/PG scheme.” Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 175-183 (in Korean).Google Search
22 
Song, C. G., Seo, I. W. and Kim, Y. D. (2012). “Analysis of secondary current effect in the modeling of shallow flow in open channels.” Adv. Water Resour., Vol. 41, pp. 29-48.10.1016/j.advwatres.2012.02.003Song, C. G., Seo, I. W. and Kim, Y. D. (2012). “Analysis of secondary current effect in the modeling of shallow flow in open channels.” Adv. Water Resour., Vol. 41, pp. 29-48.DOI
23 
Tominaga, A. and Nezu, I. (1986). “Three-dimensional turbulent structure in a straight open channel flow with varying boundary roughness.” Proc. of 3rd Asian Congress of Fluid Mech. pp. 608-611.Tominaga, A. and Nezu, I. (1986). “Three-dimensional turbulent structure in a straight open channel flow with varying boundary roughness.” Proc. of 3rd Asian Congress of Fluid Mech. pp. 608-611.Google Search
24 
Vasquez, J. A., Millar, R. G. and Steffler, P. M. (2006). Vertically- averaged and moment of momentum model for alluvial bend morphology, River, Coastal and Estuarine Morphodynamics, G. Parker and M. H. García, eds., Taylor & Francis, pp. 711-718.Vasquez, J. A., Millar, R. G. and Steffler, P. M. (2006). Vertically- averaged and moment of momentum model for alluvial bend morphology, River, Coastal and Estuarine Morphodynamics, G. Parker and M. H. García, eds., Taylor & Francis, pp. 711-718.Google Search
25 
De Vriend, H. J. (1977). “A mathematical model of steady flow in curved shallow channels.” J. Hydraul. Res. Vol. 15, No. 1, pp. 37-54.10.1080/00221687709499748De Vriend, H. J. (1977). “A mathematical model of steady flow in curved shallow channels.” J. Hydraul. Res. Vol. 15, No. 1, pp. 37-54.DOI
26 
Wilson, C. A. M. E., Bates, P. D. and Hervouet, J. M. (2002). “Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods.” J. Hydrol., Vol. 257, pp. 42-58.10.1016/S0022-1694(01)00553-4Wilson, C. A. M. E., Bates, P. D. and Hervouet, J. M. (2002). “Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods.” J. Hydrol., Vol. 257, pp. 42-58.DOI
27 
Ye, J. and McCorquodale, J. A. (1997). “Depth-averaged hydrodynamic model in curvilinear collocated grid.” J. Hydraul. Engrg., Vol. 123, No. 5, pp. 380-388.10.1061/(ASCE)0733-9429(1997)123:5(380)Ye, J. and McCorquodale, J. A. (1997). “Depth-averaged hydrodynamic model in curvilinear collocated grid.” J. Hydraul. Engrg., Vol. 123, No. 5, pp. 380-388.DOI