Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
Aharonov, E. and Sparks, D. (2004). “Stick-slip motion in simulated granular layers.” Journal Geophys. Res., 109.10.1029/2003JB002597Aharonov, E. and Sparks, D. (2004). “Stick-slip motion in simulated granular layers.” Journal Geophys. Res., 109.DOI
2 
Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H. J., Weatherley, D. and Mora, P. (2006). “Effect of rolling on dissipation in fault gouges”, Phys. Rev. E, Vol. 74, No. 3.10.1103/PhysRevE.74.031306Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H. J., Weatherley, D. and Mora, P. (2006). “Effect of rolling on dissipation in fault gouges”, Phys. Rev. E, Vol. 74, No. 3.DOI
3 
Byeon, B.-H. and Jung, Y.-H. (2013). “Measurement of stress and displacement fields in particle assembly subjected to shallow foundation loading via photoelasticity technique.” Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1947-1955.10.12652/Ksce.2013.33.5.19476Byeon, B.-H. and Jung, Y.-H. (2013). “Measurement of stress and displacement fields in particle assembly subjected to shallow foundation loading via photoelasticity technique.” Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1947-1955.DOI
4 
Corwin, E. I., Jaeger, H. M. and Nagel, S. (2005). “Structural signature of jamming in granular media.” Nature, Vol. 435, pp. 1075-1078. 10.1038/nature03698Corwin, E. I., Jaeger, H. M. and Nagel, S. (2005). “Structural signature of jamming in granular media.” Nature, Vol. 435, pp. 1075-1078.DOI
5 
Harr, M. E. (1987). Reliability based design in civil engineering, Dover Publication, Inc.Harr, M. E. (1987). Reliability based design in civil engineering, Dover Publication, Inc.Google Search
6 
Li, F. (2010). Study of stress measurement using polariscope, Ph.D thesis, Georgia Institute of Technology.Li, F. (2010). Study of stress measurement using polariscope, Ph.D thesis, Georgia Institute of Technology.Google Search
7 
Majmudar, T. S. and Behringer, R. P. (2005). “Contact force mea-surements and stress induced anisotropy in granular materials.” Nature, Vol. 435, No. 7045, p. 1079.10.1038/nature03805Majmudar, T. S. and Behringer, R. P. (2005). “Contact force mea-surements and stress induced anisotropy in granular materials.” Nature, Vol. 435, No. 7045, p. 1079.DOI
8 
Oda, M. and Kazama, H. (1998). “Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils.” Geotechnique, Vol. 48, No. 4, p. 465.10.1680/geot.1998.48.4.465Oda, M. and Kazama, H. (1998). “Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils.” Geotechnique, Vol. 48, No. 4, p. 465.DOI
9 
Oda, M., Takemura, T. and Takahashi, M. (2004). “Microstructure in shear band observed bymicrofocus X-ray computed tomography.” Geotechnique, Vol. 54, No. 8, p. 539. 10.1680/geot.2004.54.8.539Oda, M., Takemura, T. and Takahashi, M. (2004). “Microstructure in shear band observed bymicrofocus X-ray computed tomography.” Geotechnique, Vol. 54, No. 8, p. 539.DOI
10 
Phoon, K. K. and Kulhawy, F. H. (1999). “Characterization of geotechnical variability.” Canadian Geotechnical Journal, Vol. 36, No. 4, pp. 612-624.10.1139/t99-038Phoon, K. K. and Kulhawy, F. H. (1999). “Characterization of geotechnical variability.” Canadian Geotechnical Journal, Vol. 36, No. 4, pp. 612-624.DOI
11 
Prandtl, L. (1921). Über die Härte plastischer Körper, Nachr. Kgl. Ges. Wiss. Göttingen, Math. Phys. Klasse.Prandtl, L. (1921). Über die Härte plastischer Körper, Nachr. Kgl. Ges. Wiss. Göttingen, Math. Phys. Klasse.Google Search
12 
Rechenmacher, A. L. (2006). “Grain-scale processes governing shear band initiation and evolution in sands” Journal Mech. Phys. Solids, Vol. 54, No. 1, pp. 22-45.10.1016/j.jmps.2005.08.009Rechenmacher, A. L. (2006). “Grain-scale processes governing shear band initiation and evolution in sands” Journal Mech. Phys. Solids, Vol. 54, No. 1, pp. 22-45.DOI
13 
Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley and Sons, Inc., New York.10.1002/9780470172766Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley and Sons, Inc., New York.DOI
14 
Thornton, C. and Zhang, L. (2006). “A numerical examination of shear banding and simple shear non-coaxial flow rules.” Philos. Mag., Vol. 86, No. 21-22, pp. 3425-3452.10.1080/14786430500197868Thornton, C. and Zhang, L. (2006). “A numerical examination of shear banding and simple shear non-coaxial flow rules.” Philos. Mag., Vol. 86, No. 21-22, pp. 3425-3452.DOI
15 
Tordesillas, A. and Muthuswamy, M. (2009). “On the modeling of confined buckling of force chains.” Journal of the Mechanics and Physics of Solids, Vol. 57, pp. 706-727.10.1016/j.jmps.2009.01.005Tordesillas, A. and Muthuswamy, M. (2009). “On the modeling of confined buckling of force chains.” Journal of the Mechanics and Physics of Solids, Vol. 57, pp. 706-727.DOI
16 
Tordesillas, A., Zhang, J. and Behringer, R. (2009). “Buckling force chains in dense granular assemblies: Physical and Numerical Experiments.” Geom. Geoeng., Vol. 4, No. 1, pp. 3-16. 10.1080/17486020902767347Tordesillas, A., Zhang, J. and Behringer, R. (2009). “Buckling force chains in dense granular assemblies: Physical and Numerical Experiments.” Geom. Geoeng., Vol. 4, No. 1, pp. 3-16.DOI