Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
Abbott, M. B. and Rodenhuis, G. S. (1972). “A numerical simulation of the undular hydraulic jump.” Journal of Hydraulic Research, IAHR, Vol. 10, No. 3, pp. 239-257, https://doi.org/10.1080/00221687209500160.DOI
2 
Abdo, K., Riahi-Nezhad, C. K. and Imran, J. (2019). “Steady supercritical flow in a straight-wall open-channel contraction.” Journal of Hydraulic Research, IAHR, Vol. 57, No. 5, pp. 647-661, https://doi.org/10.1080/00221686.2018.1504126.DOI
3 
Batten, P., Lambert, C. and Causon, D. M. (1996). “Positively conservative high-resolution convection schemes for unstructured elements.” International Journal for Numerical Methods in Engineering, John Wiley & Sons, Vol. 39, No. 11, pp. 1821-1838, https://doi.org/10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO;2-E.DOI
4 
Bélanger, J.-B.-C.-J. (1849). Notes sur le cours d’hydraulique : Session 1849-1850, Ecole nationale des ponts et chaussées, unpublished (in French).URL
5 
Bidone, G. (1820). “Expériences sur le remou et sur la propagation des ondes.” Memorie Della Reale Accademia Delle Scienze Di Torino, Torino Dalla Stamperia Reale, Vol. 25, pp. 21-112 (in French).URL
6 
Bristeau, M.-O., Mangeney, A., Sainte-Marie, J. and Seguin, N. (2015). “An energy-consistent depth-averaged Euler system: Derivation and properties.” Discrete and Continuous Dynamical Systems - Series B, AIMS, Vol. 20, No. 4, pp. 961-988, https://doi.org/10.3934/dcdsb.2015.20.961.DOI
7 
Chanson, H. (2009). “Development of the Bélanger equation and backwater equation by Jean-Baptiste Bélanger (1828).” Journal of Hydraulic Engineering, ASCE, Vol. 135, No. 3, pp. 159-163, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(159).DOI
8 
Cheng, C.-K., Tai, Y.-C. and Jin, Y.-C. (2017). “Particle image velocity measurement and mesh-free method modeling study of forced hydraulic jumps.” Journal of Hydraulic Engineering, ASCE, Vol. 143, No. 9, 04017028, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001325.DOI
9 
Chippada, S., Ramaswamy, B. and Wheeler, M. F. (1994). “Numerical simulation of hydraulic jump.” International Journal for Numerical Methods in Engineering, John Wiley & Sons, Vol. 37, No. 8, pp. 1381-1397, https://doi.org/10.1002/nme.1620370807.DOI
10 
Chow, V. T. (1959). Open-channel hydraulics, McGraw-Hill Book Company.URL
11 
Courant, R. and Friedrichs, K. (1948). Supersonic flow and shock waves, Interscience Publishers Inc.URL
12 
Cueto-Felgueroso, L., Santillán, D., García-Palacios, J. H. and Garrote, L. (2019). “Comparison between 2D shallow-water simulations and energy-momentum computations for transcritical flow past channel contractions.” Water, MDPI, Vol. 11, No. 7, 1476, https://doi.org/10.3390/w11071476.DOI
13 
Echeverribar, I., Brufau, P. and García-Navarro, P. (2023). “Extension of a Roe-type Riemann solver scheme to model non-hydrostatic pressure shallow flows.” Applied Mathematics and Computation, Elsevier, Vol. 440, 127642, https://doi.org/10.1016/j.amc.2022.127642.DOI
14 
Escalante, C., Dumbser, M. and Castro, M. J. (2019). “An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes.” Journal of Computational Physics, Elsevier, Vol. 394, pp. 385-416, https://doi.org/10.1016/j.jcp.2019.05.035.DOI
15 
Fennema, R. J. and Chaudhry, M. H. (1986). “Explicit numerical schemes for unsteady free-surface flows with shocks.” Water Resources Research, AGU, Vol. 22, No. 13, pp. 1923-1930, https://doi.org/10.1029/WR022i013p01923.DOI
16 
Forster, J. W. and Skrinde, R. A. (1950). “Control of the hydraulic jump by sills.” Transactions of the American Society of Civil Engineers, ASCE, Vol. 115, No. 1, pp. 973-1022, https://doi.org/10.1061/TACEAT.0006341.DOI
17 
Gharangik, A. M. and Chaudhry, M. H. (1991). “Numerical simulation of hydraulic jump.” Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 9, pp. 1195-1211, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:9(1195).DOI
18 
Gottlieb, D. and Türkei, E. (1976). “Dissipative two-four methods for time-dependent problems.” Mathematics of Computation, AMS, Vol. 30, No. 136, pp. 703-723, https://doi.org/10.2307/2005392.DOI
19 
Green, A. E. and Naghdi, P. M. (1976). “A derivation of equations for wave propagation in water of variable depth.” Journal of Fluid Mechanics, Cambridge, Vol. 78, No. 2, pp. 237-246, https://doi.org/10.1017/S0022112076002425.DOI
20 
Hager, W. H. (1992). Energy dissipators and hydraulic jump, Springer, Netherlands, Dordrecht.URL
21 
Henderson, F. (1966). Open channel flow, Macmillan Publishing Co., Inc., New York.URL
22 
Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of Computational Physics, Elsevier, Vol. 39, No. 1, pp. 201-225, https://doi.org/10.1016/0021-9991(81)90145-5.DOI
23 
Hwang, S.-Y. (2015). “A novel scheme to depth-averaged model for analyzing Shallow-water flows over discontinuous topography.” KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 35, No. 6, pp. 1237-1246, https://doi.org/10.12652/Ksce.2015.35.6.1237 (in Korean).DOI
24 
Hwang, S.-Y. (2022). “Numerical analysis of shallow-water flow over the square-edged broad-crested weir.” Journal of Korea Water Resources Association, KWRA, Vol. 55, No. 10, pp. 811- 821, https://doi.org/10.3741/JKWRA.2022.55.10.811 (in Korean).DOI
25 
Hwang, S.-Y. (2023). “Numerical simulation of shallow-water flow over perpendicular broad-crested weir.” Proceedings of 2023 Conference of the Korea Water Resources Association, KWRA, pp. 503 (in Korean).URL
26 
Hwang, S.-Y. and Lee, S. H. (2012). “An application of the HLLL approximate Riemann solver to the shallow water equations.” KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 32, No. 1B, pp. 21-27, https://doi.org/10.12652/Ksce.2012.32.1B.021 (in Korean).DOI
27 
Idelchik, I. E. (2008). Handbook of hydraulic resistance, 4th ed., Begell House Inc., New York.URL
28 
Jiménez, O. F. and Chaudhry, M. H. (1988). “Computation of supercritical free-surface flows.” Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 4, pp. 377-395, https://doi.org/10.1061/(ASCE)0733-9429(1988)114:4(377).DOI
29 
Katopodes, N. D. (1984). “A dissipative Galerkin scheme for open-channel flow.” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 4, pp. 450-466, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(450).DOI
30 
Ketcheson, D. I. and de Luna, M. Q. (2022). “Numerical simulation and entropy dissipative cure of the carbuncle instability for the shallow water circular hydraulic jump.” International Journal for Numerical Methods in Fluids, Vol. 94, No. 6, pp. 655-677, https://doi.org/10.1002/fld.5070.DOI
31 
Khan, A. A. and Steffler, P. M. (1996). “Physically based hydraulic jump model for depth-averaged computations.” Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 10, pp. 540-548, https://doi.org/10.1061/(ASCE)0733-9429(1996)122:10(540).DOI
32 
Kupka, F. and Muthsam, H. J. (2017). “Modelling of stellar convection.” Living Reviews in Computational Astrophysics, Springer, Vol. 3, No. 1, https://doi.org/10.1007/s41115-017-0001-9.DOI
33 
Lee, K. S. and Lee, S.-T. (1998). “Two-dimensional finite-volume unsteady-flow model for shocks.” Journal of Korea Water Resources Association, KWRA, Vol. 31, No. 3, pp. 279-290 (in Korean).URL
34 
LeVeque, R. (2002). Finite volume methods for hyperbolic problems, Cambridge University Press.URL
35 
Linde, T. (2002). “A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws.” International Journal for Numerical Methods in Fluids, Jhon Wiley & Sons, Vol. 40, Nos. 3-4, pp. 391-402, https://doi.org/10.1002/fld.312.DOI
36 
Liu, Q. and Drewes, U. (1994). “Turbulence characteristics in free and forced hydraulic jumps.” Journal of Hydraulic Research, IAHR, Vol. 32, No. 6, pp. 877-898, https://doi.org/10.1080/00221689409498696.DOI
37 
Long, D., Steffler, P. M. and Rajaratnam, N. (1991). “A numerical study of submerged hydraulic jumps.” Journal of Hydraulic Research, IAHR, Vol. 29, No. 3, pp. 293-308, https://doi.org/10.1080/00221689109498435.DOI
38 
Madsen, P. A. and Svendsen, I. A. (1983). “Turbulent bores and hydraulic jumps.” Journal of Fluid Mechanics, Cambridge University Press, Vol. 129, pp. 1-25, https://doi.org/10.1017/S0022112083000622.DOI
39 
McCorquodale, J. A. and Khalifa, A. (1983). “Internal flow in hydraulic jumps.” Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 5, pp. 684-701, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(684).DOI
40 
Molls, T. and Chaudhry, M. H. (1995). “Depth-averaged open-channel flow model.” Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 6, pp. 453-465, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(453).DOI
41 
Mossa, M. and Petrillo, A. (2003). “A brief history of the jump of Bidone.” Proceedings of 30th International Association for Hydraulic Engineering and Research World Congress, IAHR, Thessaloniki, Greece, pp. 57-64.URL
42 
Navas-Montilla, A. and Murillo, J. (2019). “Improved Riemann solvers for an accurate resolution of 1D and 2D shock profiles with application to hydraulic jumps.” Journal of Computational Physics, Elsevier, Vol. 378, pp. 445-476, https://doi.org/10.1016/j.jcp.2018.11.023.DOI
43 
Oh, S.-T., Hwang, S.-Y. and Lee, K. S. (1998). “Numerical analysis of hydraulic jump by the flux splitting method.” KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 18, No. II-3, pp. 215-221 (in Korean).URL
44 
Pandolfi, M. (1973). “Numerical computation of one-dimensional unsteady flow in channels.” Meccanica, Vol. 8, No. 4, pp. 236-242, https://doi.org/10.1007/BF02342409.DOI
45 
Pandolfi, M. (1975). “Numerical experiments on free surface water motion with bores.” Proceedings of the 4th International Conference on Numerical Methods in Fluid Dynamics, pp. 304-312, https://doi.org/10.1007/BFb0019766.DOI
46 
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1992). Numerical recipes in C - the art of scientific computing, 2nd ed., Cambridge University Press, New York.URL
47 
Rahman, M. and Chaudry, M. H. (1995). “Simulation of hydraulic jump with grid adaptation.” Journal of Hydraulic Research, IAHR, Vol. 33, No. 4, pp. 555-569, https://doi.org/10.1080/00221689509498660.DOI
48 
Stoker, J. J. (1948). “The formation of breakers and bores the theory of nonlinear wave propagation in shallow water and open channels.” Communications on Pure and Applied Mathematics, Wiley, Vol. 1, No. 1, pp. 1-87, https://doi.org/10.1002/cpa.3160010101.DOI
49 
Strutt, J. W. (1914). “On the theory of long waves and bores.” Proceedings of the Royal Society of London - Series A, Royal Society, Vol. 90, No. 619, pp. 324-328, https://doi.org/10.1098/rspa.1914.0055.DOI
50 
Suzuki, Y. and van Leer, B. (2005). “Application of the 10-moment model to mems flows.” Proceedings of 43rd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit, AIAA, pp. 1-13, https://doi.org/10.2514/6.2005-1398.DOI
51 
Ting, W. K., Puay, H. T. and Zakaria, N. A. (2022). “Numerical simulation of hydraulic jump with the inclusion of Boussinesq term.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 93, No. 1, pp. 186-199, https://doi.org/10.37934/arfmts.93.1.186199.DOI
52 
Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows, Wiley, Chichester, England.URL
53 
van Leer, B. (1976). “MUSCL, a new approach to numerical gas dynamics.” Proceedings of 2nd European Conference on Computational Physics, EPS, Garching, Germany, pp. 1-4.URL
54 
van Leer, B. (2003). “Upwind and high-resolution methods for compressible flow - from donor cell to residual-distribution schemes.” Proceedings of 16th American Institute of Aeronautics and Astronautics Computational Fluid Dynamics Conference, AIAA, Orlando, USA, pp. 1-8, https://doi.org/10.2514/6.2003-3559.DOI
55 
Viti, N., Valero, D. and Gualtieri, C. (2019). “Numerical simulation of hydraulic jumps. part 2: Recent results and future outlook.” Water, MDPI, Vol. 11, No. 1, https://doi.org/10.3390/w11010028.DOI
56 
Weiyan, T. (1992). Shallow water hydrodynamics, 1st edition, Elsevier Science Publishers, Amsterdam, The Netherland.URL
57 
White, F. M. (2011). Fluid mechanics, 7th edition, McGraw-Hill.URL
58 
Wilsey, E. F. (1923). The history and mathematics of the hydraulic jump, Master’s thesis, State University of Iowa, Iowa, USA, https://doi.org/10.17077/etd.005638.DOI
59 
Yen, B. C. (2002). “Open channel flow resistance.” Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 1, pp. 20-39, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20).DOI
60 
Younus, M. and Chaudhry, M. H. (1994). “A depth-averaged turbulence model for the computation of free-surface flow.” Journal of Hydraulic Research, IAHR, Vol. 32, No. 3, pp. 415-444, https://doi.org/10.1080/00221689409498744.DOI
61 
Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingram, D. M. (2001). “The surface gradient method for the treatment of source terms in the shallow-water equations.” Journal of Computational Physics, Elsevier, Vol. 168, No. 1, pp. 1-25, https://doi.org/10.1006/jcph.2000.6670.DOI