Title |
Analysis for A Partial Distribution Loaded Orthotropic Rectangular Plate with Various Boundary Condition
|
DOI |
https://doi.org/10.11112/jksmi.2018.22.5.013 |
Keywords |
Orthotropic plate ; Partially loaded ; Double trigonometric series ; Single fourier series |
Abstract |
In this study, a governing differential equation for the bending problem of orthotropic rectangular plate is drived. It's exact solution for various boundary conditions is presented. This solution follows traditional method like Navier's solution or Levy's solution that transforms the governing differential equation into an algebraic equation by using trigonometric series. To obtain a solution by Levy's method, it is required that two opposite edges of the plate be simply supported. And the boundary conditions, for which the Navier's method is applicable, are simply supported edge at all edges. In this study, it overcomes the limitations of the previous Navier's and Levy's methods.This solution is applicable for any combination of boundary conditions with simply supported edge and clamped edge in x, y direction. The plate could be subjected to uniform, partially uniform, and line loads. The advantage of the solution is that it is the exact solution as well as it overcomes the limitations of the previous Navier's and Levy's methods. Calculations are presented for orthotropic plates with nonsymmetric boundary conditions. Comparisons between the result of this paper and the result of Navier, Levy and Szilard solutions are made for the isotropic plates. The deflections were in excellent agreement.
|