Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

  1. ํ•™์ƒํšŒ์›, ๋‹จ๊ตญ๋Œ€ํ•™๊ต ๊ฑด์ถ•๊ณตํ•™๊ณผ ์„์‚ฌ๊ณผ์ •
  2. ์ •ํšŒ์›, ๋‹จ๊ตญ๋Œ€ํ•™๊ต ๊ฑด์ถ•๊ณตํ•™๊ณผ ๋ฐ•์‚ฌ
  3. ์ •ํšŒ์›, ๋‹จ๊ตญ๋Œ€ํ•™๊ต ๊ฑด์ถ•๊ณตํ•™๊ณผ ๊ต์ˆ˜
  4. ์ •ํšŒ์›, ๋‹จ๊ตญ๋Œ€ํ•™๊ต ๊ฑด์ถ•๊ณตํ•™๊ณผ ์—ฐ๊ตฌ๊ต์ˆ˜, ๊ต์‹ ์ €์ž



๊ตฌ์กฐ๋„๋ฉด ์ž๋™ํ™”, ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ, ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ๊ฑด์ถ•๊ตฌ์กฐ์„ค๊ณ„
Structural drawing automation, Large language model (LLM), Structured prompt, Prompt engineering, Architectural structural design

1. ์„œ ๋ก 

๊ฑด์ถ• ๊ตฌ์กฐ๊ณตํ•™์€ ๊ตฌ์กฐ๋ฌผ์˜ ์•ˆ์ „์„ฑ๊ณผ ๊ฒฝ์ œ์„ฑ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•ด์•ผ ํ•˜๋Š” ๊ณ ๋‚œ๋„ ๋ถ„์•ผ๋กœ, ํŠนํžˆ ํ”„๋กœ์ ํŠธ์˜ ๋Œ€ํ˜•ํ™”โ‹…๋ณต์žกํ™”์— ๋”ฐ๋ผ ๊ตฌ์กฐ๋„๋ฉด ์ž‘์„ฑ ์ž‘์—…์˜ ๋ฐ˜๋ณต์„ฑ๊ณผ ๋น„ํšจ์œจ์„ฑ์ด ์‹ฌํ™”๋˜๊ณ  ์žˆ๋‹ค. ์‹ค์ œ๋กœ ๊ตญ๋‚ด ๋Œ€ํ˜• ๊ณต๊ณต ๊ฑด์ถ•๋ฌผ์˜ ์‹ค์‹œ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ๊ตฌ์กฐ ์„ค๊ณ„์—๋งŒ ํ‰๊ท  11โˆผ15๊ฐœ์›”์ด ์†Œ์š”๋˜๋ฉฐ, ํ•„์š”ํ•œ ๋„๋ฉด ์ˆ˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๋ฐ˜๋ณต ์ž‘์—…๋Ÿ‰๋„ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Š” ์„ค๊ณ„ ๊ธฐ๊ฐ„ ์ง€์—ฐ๊ณผ ๋น„์šฉ ์ฆ๊ฐ€ ์˜ ์ฃผ์š” ์›์ธ์œผ๋กœ ์ง€์ ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ธฐ์กด์˜ ์ „ํ†ต์  CAD ๊ธฐ๋ฐ˜ ์ž‘์—… ๋ฐฉ์‹์€ ์ •๋ฐ€ํ•œ ๋„๋ฉด ํ‘œํ˜„์—๋Š” ์ ํ•ฉํ•˜์ง€๋งŒ, ๋ฐ˜๋ณต์  ๋„๋ฉด ์ž‘์„ฑ์ด๋‚˜ ๋ณต์žกํ•œ ์ œ์•ฝ์กฐ๊ฑด ์ž๋™ํ™” ์ธก๋ฉด์—์„œ๋Š” ๋ณธ์งˆ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ง€๋‹Œ๋‹ค. ์ตœ๊ทผ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ๊ฑด์ถ•โ‹…๊ตฌ์กฐ ๋ถ„์•ผ์—์„œ๋„ ์„ค๊ณ„ ์ž๋™ํ™” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. Du et al.(2024)๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ LLM ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ Text2BIM ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ ์ž์—ฐ์–ด๋กœ๋ถ€ํ„ฐ BIM ๋ชจ๋ธ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€์œผ๋ฉฐ, Khan et al. (2024) ์—ฐ๊ตฌ์—์„œ๋Š” ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ CAD ๋ชจ๋ธ ์ž๋™ ์ƒ์„ฑ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตญ๋‚ด์—์„œ๋„ BIM ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ์„ค๊ณ„ ์ž๋™ํ™”๋ฅผ ๋ชจ์ƒ‰ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋ณด๊ณ ๋˜์—ˆ๋‹ค(Mun, 2024; Ma & Lee, 2024). ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•๋“ค์€ ์‹œ์Šคํ…œ ๊ตฌ์กฐ์˜ ๋ณต์žก์„ฑ๊ณผ ๋ฒ”์šฉ์  ์„ค๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ํ•œ๊ตญ์˜ ๊ตฌ์กฐ์„ค๊ณ„ ๊ธฐ์ค€๊ณผ ์‹ค๋ฌด ๊ด€ํ–‰์„ ๋ฐ˜์˜ํ•œ ์ฆ‰์‹œ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์†”๋ฃจ์…˜์œผ๋กœ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ ๊ธฐ์กด์˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๊ธฐ๋ฒ•์ธ Chain-of-Thought(Wei et al., 2022) ์ด๋‚˜ Tree-of-Thought (Yao et al., 2023)๋Š” LLM์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์œผ๋‚˜, ๊ตฌ์กฐ๋„๋ฉด๊ณผ ๊ฐ™์€ ๋„ํ˜• ์ƒ์„ฑ ๋ฌธ์ œ์—๋Š” ์ง์ ‘ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ์ง€์ ์ด ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์—์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ ๊ตฌ์กฐ์„ค๊ณ„ ์‹ค๋ฌด์— ์ฆ‰์‹œ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ(Structured Prompt, S-Prompt) ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. S-Prompt๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ฐจ๋ณ„์„ฑ์„ ์ง€๋‹Œ๋‹ค. (1) ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ ์—†์ด ๋‹จ์ผ LLM๋งŒ์œผ๋กœ ์ •๋ฐ€ํ•œ ๊ตฌ์กฐ๋„๋ฉด์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค. (2) ํ•œ๊ตญ๊ฑด์ถ•๊ตฌ์กฐ๊ธฐ์ค€(KBC)์˜ ๊ทœ์ •์„ ํ”„๋กฌํ”„ํŠธ์— ๋ช…์‹œ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜์—ฌ ์ฝ”๋“œ ์ค€์ˆ˜๋ฅผ ์ž๋™ํ™”ํ•œ๋‹ค. (3) ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ์— ํŠนํ™”๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณ„์ธตํ™”์™€ ์ˆ˜ํ•™์  ์ œ์•ฝ์กฐ๊ฑด ์ •์˜ ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ, ๋„๋ฉด์˜ ์š”์†Œ ๋ฐฐ์น˜์™€ ์ƒ์„ธ ์กฐ๊ฑด์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ธฐ์ˆ ํ•œ๋‹ค. ํŠนํžˆ LLM์˜ ํ™˜๊ฐ ํ˜„์ƒ(hallucination)์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋„๋ฉด ์š”์†Œ ๊ฐ„ ๊ณต๊ฐ„๊ด€๊ณ„๋ฅผ ์ˆ˜์น˜ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ช…์‹œํ•˜๊ณ , ์ •๋ณด์ด๋ก ์  ๊ด€์ ์—์„œ ์ตœ์ ํ™”๋œ ํ”„๋กฌํ”„ํŠธ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ตœ์ข… ๋ชฉํ‘œ๋Š” ์ด๋Ÿฌํ•œ S-Prompt ๊ธฐ๋ฒ•์„ ํ†ตํ•ด KBC ์ค€์ˆ˜ ๊ตฌ์กฐ๋„๋ฉด์„ LLM์ด ์ž๋™ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Anthropic Claude 3.7 Sonnet๊ณผ OpenAI GPT-4o ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋‘ ๋ชจ๋ธ์˜ 2024๋…„ 5์›” ์ด์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ธฐ์ค€์œผ๋กœ ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ ์„ฑ๋Šฅ์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜์˜€๋‹ค.

๋ณธ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 2์žฅ์—์„œ๋Š” ๊ด€๋ จ ์—ฐ๊ตฌ ๋™ํ–ฅ๊ณผ ๋ฐฐ๊ฒฝ์„ ๊ณ ์ฐฐํ•œ๋‹ค. 3์žฅ์—์„œ๋Š” ์ œ์•ˆํ•˜๋Š” S-Prompt ๋ฐฉ๋ฒ•๋ก ๊ณผ ๊ตฌํ˜„ ์ ˆ์ฐจ๋ฅผ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•œ๋‹ค. 4์žฅ์—์„œ๋Š” ์‹คํ—˜ ์„ค์ • ๋ฐ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์–‘์  ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 5์žฅ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๋ฅผ ์ •๋ฆฌํ•˜๊ณ  ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ๋…ผ์˜ํ•œ๋‹ค.

2. ๋ณธ ๋ก 

2.1 LLM์˜ ๊ตฌ์กฐ์„ค๊ณ„ ๋ถ„์•ผ ์ ์šฉ

LLM์„ ํ™œ์šฉํ•œ ์—…๋ฌด ์ž๋™ํ™” ์—ฐ๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์„œ ํ™•์‚ฐ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ตฌ์กฐ๊ณตํ•™ ๋ถ„์•ผ์—์„œ๋„ ์‹ค์ œ ์ ์šฉ ์‚ฌ๋ก€๊ฐ€ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, Liang et al.(2025)์€ GPT-4o ๊ธฐ๋ฐ˜ LLM์„ OpenSeesPy์™€ ์—ฐ๋™ํ•˜์—ฌ ํ•˜์ค‘ ์‹œ๋‚˜๋ฆฌ์˜ค ์ƒ์„ฑ, FEM ํ•ด์„, ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”๊นŒ์ง€ ํ†ตํ•ฉํ•œ ์ž๋™ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ์‹œ์Šคํ…œ์€ 20๊ฐœ ๋ฒค์น˜๋งˆํฌ ๋ฌธ์ œ์—์„œ 100%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜๋ฉฐ ๊ธฐ์กด ๊ธฐ๋ฒ•์„ ํฌ๊ฒŒ ๋Šฅ๊ฐ€ํ•˜์˜€๋‹ค๊ณ  ๋ณด๊ณ ๋˜์—ˆ์œผ๋‚˜, ๊ฒ€ํ† ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. Qin et al.(2024)๋Š” LLM์„ ์ œ์–ด ์ฝ”์–ด๋กœ, ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํƒ์ƒ‰๊ธฐ๋กœ ํ™œ์šฉํ•œ โ€œShear-Wall IDOโ€ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์‹ค์ œ ํ”„๋กœ์ ํŠธ์—์„œ ์„ค๊ณ„ ์‚ฌ์ดํด์„ ์•ฝ 30๋ฐฐ ๋‹จ์ถ•ํ•˜์˜€๋‹ค. Madireddy et al.(2025)์€ Revit API์™€ Claudeโ‹…GPT-4o๋ฅผ ๊ฒฐํ•ฉํ•ด KBC/IBC ์กฐํ•ญ ๋งคํ•‘ ๋ฐ ์œ„๋ฐ˜ ๋ณด๊ณ ๋ฅผ ์ž๋™ํ™”ํ•˜์—ฌ ๋†’์€ ์ ํ•ฉ์„ฑ์„ ํ™•๋ณดํ•˜๊ณ  ๊ฒ€ํ†  ์‹œ๊ฐ„์„ ํ˜„์ €ํžˆ ์ค„์˜€๋‹ค. Lee et al.(2024)๋Š” ์Œ์„ฑโ‹…์ž์—ฐ์–ด ๋ช…๋ น๋งŒ์œผ๋กœ BIM ์š”์†Œ๋ฅผ ์ž‘์„ฑโ‹…์ˆ˜์ •ํ•˜๋Š” Generalized LLM Augmented BIM Framework๋ฅผ ์ œ์‹œํ•˜์—ฌ GUI ๋ฐฉ์‹๋ณด๋‹ค ๋น ๋ฅธ ๋ชจ๋ธ ์ž‘์„ฑ ์†๋„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์€ ์„ค๊ณ„ ๋‹จ๊ณ„๊ฐ€ ๊ฑด์„ค ํ”„๋กœ์ ํŠธ ๋น„์šฉ์—์„œ ์ƒ๋‹น ๋น„์ค‘์„ ์ฐจ์ง€ํ•œ๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•  ๋•Œ, LLM ๋„์ž…์ด ์—…๋ฌด ํšจ์œจ์„ ํฌ๊ฒŒ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์‹ค์ œ ๋Œ€ํ˜• ๊ฑด์ถ•๋ฌผ์˜ ๊ตฌ์กฐ๋„๋ฉด์€ ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์ฒœ ์žฅ์— ์ด๋ฅด๋ฉฐ, ํ˜„์žฌ๊นŒ์ง€ ์ƒ๋‹น ๋ถ€๋ถ„์ด CAD ํ™˜๊ฒฝ์—์„œ ์ธ๋ ฅ์— ์˜์กดํ•ด ์ž‘์„ฑ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ฐ˜๋ณต์ ์ด๊ณ  ์ •ํ˜•ํ™”๋œ ๋„๋ฉด ์ž‘์—…์— LLM์„ ์ ์šฉํ•˜๋ฉด ์„ค๊ณ„ ๊ธฐ๊ฐ„ ๋‹จ์ถ•๊ณผ ๊ณต์‚ฌ๋น„ ์ ˆ๊ฐ์„ ๋™์‹œ์— ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ํ† ๋Œ€๋กœ LLM ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ์„ค๊ณ„ ์ž๋™ํ™”์— ๋„์ „ํ•œ๋‹ค. ์ตœ์‹  LLM์€ ๋‹ค์–‘ํ•œ ๋ฒค์น˜๋งˆํฌ์—์„œ ์šฐ์ˆ˜ํ•œ ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ์ž…์ฆํ–ˆ์ง€๋งŒ, ๊ตฌ์กฐ๋„๋ฉด ์ž๋™ํ™”์—๋Š” ๊ณต๊ฐ„ ์ถ”๋ก ๊ณผ ๊ทœ์ • ์ค€์ˆ˜๊ฐ€ ํ•„์ˆ˜์ด๋ฏ€๋กœ ๋„๋ฉ”์ธ ํŠนํ™” ํ”„๋กฌํ”„ํŠธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” LLM์„ ๊ตฌ์กฐ๋„๋ฉด ์ž‘์„ฑ์— ์ ์šฉํ•˜๊ณ ์ž ํ•˜๋ฉฐ, ๋‹ค์Œ ์ ˆ์—์„œ ๊ด€๋ จ ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ๊ฒ€ํ† ํ•œ๋‹ค.

2.2 ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๋ฐ ๋„๋ฉด ์ž๋™ํ™” ๋ฐฐ๊ฒฝ

ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ถœ๋ ฅ์„ ๋ชฉํ‘œ ์ง€ํ–ฅ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด ์ž…๋ ฅ ๊ตฌ๋ฌธ์„ ์ฒด๊ณ„ํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์ด๋ฉฐ, ์ตœ๊ทผ ๋ณตํ•ฉ ์ถ”๋ก  ๊ณผ์ œ ์ „๋ฐ˜์—์„œ ํ•ต์‹ฌ ์—ฐ๊ตฌ ์ฃผ์ œ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ Chain-of-Thought(CoT) ๊ธฐ๋ฒ•์€ LLM์ด ๋‹จ๊ณ„๋ณ„ ์‚ฌ๊ณ  ๊ณผ์ •์„ ์„œ์ˆ ํ•˜๋„๋ก ์œ ๋„ํ•ด ์ˆ˜ํ•™โ‹…๋…ผ๋ฆฌ ๋ฌธ์ œ์—์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•˜์˜€๊ณ (Wei et al., 2022), Tree- of-Thought(ToT)๋Š” ํƒ์ƒ‰์  ๋ถ„๊ธฐ ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ถ”๋ก  ๊ฒฝ๋กœ๋ฅผ ํ‰๊ฐ€โ‹…์„ ํƒํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ์‚ฌ๊ณ ์˜ ๊นŠ์ด์™€ ํญ์„ ํ™•์žฅํ•˜์˜€๋‹ค(Yao et al., 2023) . ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ผ๋ฐ˜-๋ชฉ์  ๊ธฐ๋ฒ•๋“ค์€ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ํŒ๋‹จ์—๋Š” ํšจ๊ณผ์ ์ด์ง€๋งŒ, ์ขŒํ‘œโ‹…์น˜์ˆ˜์™€ ๊ฐ™์€ ์ •๋Ÿ‰ ์ œ์•ฝ์„ ๋™๋ฐ˜ํ•˜๋Š” ๋„๋ฉด ์ƒ์„ฑ ๊ณผ์ œ์—๋Š” ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ธ๋‹ค. ์ตœ๊ทผ ReAct ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์‚ฌ๊ณ (trace)-ํ–‰๋™(action) ๋ฃจํ”„๋ฅผ ๊ฒฐํ•ฉํ•ด ์™ธ๋ถ€ ๋„๊ตฌ ํ˜ธ์ถœ๊นŒ์ง€ ์ง€์›ํ–ˆ์œผ๋‚˜, ๋ฒกํ„ฐ ์ขŒํ‘œ์˜ ์˜ค์ฐจ ๋ˆ„์ ๊ณผ ๊ฐ์ฒด ํ™˜๊ฐ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜์ง€ ๋ชปํ•œ๋‹ค(Yang et al., 2023).

์ด ๊ฐ™์€ ํ•œ๊ณ„๋Š” LLM ๊ณต๊ฐ„โ‹…๊ธฐํ•˜ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ์—์„œ๋„ ํ™•์ธ๋œ๋‹ค. LEGO-Puzzles ์‹คํ—˜์—์„œ 20์ข… ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM์˜ ๋‹ค๋‹จ๊ณ„ ๊ณต๊ฐ„ ์ถ”๋ก  ์ •ํ™•๋„๋Š” ์ตœ๋Œ€ 50%์— ๊ทธ์ณค์œผ๋ฉฐ(Tang et al., 2025), Geometric Reasoning Gap ์—ฐ๊ตฌ ์—ญ์‹œ ๋‹จ์ˆœ ๊ธฐํ•˜ ์ž‘๋„ ๋ฌธ์ œ์—์„œ ๊ฐ์ฒด ์œ„์น˜ ์˜ค๋ฅ˜์™€ ์น˜์ˆ˜ ํ™˜๊ฐ์„ ๋นˆ๋ฒˆํžˆ ๋ณด๊ณ ํ•˜์˜€๋‹ค (Mouselinos et al., 2024) . ๋”ฐ๋ผ์„œ ๊ตฌ์กฐ๋„๋ฉด์ฒ˜๋Ÿผ ๊ณต๊ฐ„ ์ œ์•ฝ๊ณผ ๊ทœ์ • ์ค€์ˆ˜๊ฐ€ ํ•ต์‹ฌ์ธ ์ž‘์—…์—๋Š”, ๊ธฐ์กด CoTโ‹…ToT๋งŒ์œผ๋กœ ์ถฉ๋ถ„์น˜ ์•Š๋‹ค๋Š” ๊ฒฐ๋ก ์ด ๋„์ถœ๋œ๋‹ค.

ํ•œํŽธ, ๋„๋ฉด ์ž๋™ํ™” ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ๋„ํ˜• ์ธ์‹๊ณผ ๋„ํ˜• ์ƒ์„ฑ์œผ๋กœ ๋ถ„๊ธฐ๋ผ ๋ฐœ์ „ํ•ด ์™”๋‹ค. ์ธ์‹ ์ธก๋ฉด์—์„œ๋Š” ๋„๋ฉด์„ 2D ๋„๋ฉด ์ •๋ณด๋กœ๋ถ€ํ„ฐ 3D BIM ๊ฐ์ฒด๋กœ ๋ณ€ํ™˜ํ•˜๊ฑฐ๋‚˜ ๋ฐฐ๊ทผํ‘œ๋ฅผ ์ž๋™ ์ถ”์ถœํ•˜๋Š” ๊ธฐ๋ฒ•์ด ์‹œ๋„๋˜์—ˆ์œผ๋‚˜(Kim and Chin, 2019), ์ „์ฒด ๊ตฌ์กฐ๋„๋ฉด์„ ์ƒ์„ฑํ•˜๋Š” ๋‹จ๊ณ„์—๋Š” ์ด๋ฅด์ง€ ๋ชปํ–ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ดˆ๊ธฐ ์Šค์ผ€์น˜ BIM ๋ชจ๋ธ์„ ์„ค๊ณ„ BIM ๋‹จ๊ณ„๋กœ ๋ฐœ์ „์‹œํ‚ค๋Š” Sketch2BIM ์ ‘๊ทผ๋ฒ•๋„ ์ œ์•ˆ๋˜์—ˆ์œผ๋‚˜(Qiu et al., 2021), ์—ฌ์ „ํžˆ ์ „์ฒด ๊ตฌ์กฐ๋„๋ฉด ์ž๋™ ์ƒ์„ฑ์—๋Š” ์ œ์•ฝ์ด ์žˆ์—ˆ๋‹ค. ์ƒ์„ฑ ์ธก๋ฉด์—์„œ ์ฃผ๋ชฉํ•  ํ๋ฆ„์€ LLM์—๊ฒŒ ๋„ํ˜• ์ž์ฒด๋ฅผ ์ถœ๋ ฅํ•˜๊ฒŒ ํ•˜๋Š” ์ „๋žต์ด๋‹ค. SVG Builder๋Š” ์ปดํฌ๋„ŒํŠธ ๊ธฐ๋ฐ˜ ํ† ํฌ๋‚˜์ด์ €๋กœ ์•„์ด์ฝ˜โ‹…ํฐํŠธ ๋„๋ฉ”์ธ์—์„œ 1 px ์ดํ•˜ ์œ„์น˜ ์˜ค์ฐจ๋ฅผ ๋ณด๊ณ ํ•˜์˜€๊ณ (Chen et al., 2024), Omni SVG๋Š” ํ…์ŠคํŠธโ‹…์ด๋ฏธ์ง€ ์–‘ ์ž…๋ ฅ์„ ๋ฐ›์•„ 64 k tokens ๊ทœ๋ชจ๊นŒ์ง€ ๋ฒกํ„ฐ ๊ทธ๋ž˜ํ”ฝ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค(Guo et al., 2025) . ์ด๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ VGBench๋Š” SVGโ‹…TikZโ‹…Graphviz 2,100๋ฌธํ•ญ์„ ํฌํ•จํ•ด LLM์˜ ๋„ํ˜• ์ดํ•ดโ‹…์ƒ์„ฑ์„ ์ •๋ฐ€ ์ธก์ •ํ•˜๋ฉฐ, ์ดˆ๊ธฐ ๊ฒฐ๊ณผ๋Š” ๋Œ€๋ถ€๋ถ„ LLM ๋ชจ๋ธ๋“ค์ด ์ขŒํ‘œ ์ •ํ™•๋„์™€ ์œ„์ƒ ๋ณด์กด ์ธก๋ฉด์—์„œ ํฐ ํŽธ์ฐจ๋ฅผ ๋ณด์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค(Zou et al., 2024). ํ•œํŽธ, LLM์„ ํ™œ์šฉํ•˜์ง€ ์•Š๋Š” ์ฝ”๋“œ ๊ธฐ๋ฐ˜ CAD ์ž๋™ํ™”(์ผ๋ช… CodeCAD) ์ ‘๊ทผ๋“ค๋„ ๋ณ‘ํ–‰ ๋ฐœ์ „ํ•ด ์™”๋Š”๋ฐ, ์ด๋Š”์Šคํฌ๋ฆฝํŠธ๋‚˜ API๋ฅผ ํ†ตํ•ด ๋„๋ฉด์„ ์ ˆ์ฐจ์ ์œผ๋กœ ์ƒ์„ฑํ•จ์œผ๋กœ์จ ํ”„๋กฌํ”„ํŠธ ์—†์ด๋„ ์„ค๊ณ„ ์ž๋™ํ™”๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋„๋ฉด์„ ์‹ค๋ฌด CAD ํ™˜๊ฒฝ์œผ๋กœ ์ง์ ‘ ์ „ํ™˜ํ•˜๋ ค๋ฉด LLM ์ถœ๋ ฅ ํ˜•์‹์ด ๋ฒกํ„ฐโ‹…์ขŒํ‘œ ๊ธฐ๋ฐ˜์ด์–ด์•ผ ํ•œ๋‹ค. Scalable Vector Graphics(SVG)๋Š” XML ๊ธฐ๋ฐ˜ ํ…์ŠคํŠธ ํฌ๋งท์œผ๋กœ ์ขŒํ‘œโ‹…๊ณก์„ โ‹…๋ ˆ์ด์–ด ์ •๋ณด๋ฅผ ๊ธฐ์ˆ ํ•˜๋ฉฐ, DXF/DWG ์—ญ์‹œ ASCII/๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•ํƒœ๋กœ ๋™์ผ ์ •๋ณด๋ฅผ ์ €์žฅํ•œ๋‹ค. DXF๋Š” AutoCAD์˜ ๋ฐ”์ด๋„ˆ๋ฆฌ ๋„๋ฉด ํ˜•์‹(DWG)์„ ASCII๋กœ ํ‘œํ˜„ํ•œ ๊ตํ™˜ ํ˜•์‹์œผ๋กœ, ๋‘ ํ˜•์‹ ๋ชจ๋‘ ์ โ‹…์„ โ‹…ํ˜ธ ์ •๋ณด๋ฅผ ์ ˆ๋Œ€ ์ขŒํ‘œ๋กœ ์ €์žฅํ•œ๋‹ค. Fahiem and Farhan(2007)์€ SVG์˜ path ์š”์†Œ๋ฅผ DXF์˜ polyline๊ณผ arc ์š”์†Œ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜์—ฌ SVG์™€ DXF ๊ฐ„์— ์ •๋ณด ์†์‹ค ์—†๋Š” ์–‘๋ฐฉํ–ฅ ๋ณ€ํ™˜์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ LLM์˜ ์ถœ๋ ฅ ํฌ๋งท์œผ๋กœ SVG๋ฅผ ์„ ํƒํ•˜๊ณ  ์ถ”ํ›„ CAD ๋„๋ฉด(DXF)์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์ ‘๊ทผ์˜ ๊ธฐ์ˆ ์  ๊ทผ๊ฑฐ๊ฐ€ ๋œ๋‹ค.

์ด๋Š” LLM์ด SVG๋ฅผ ์ง์ ‘ ์ถœ๋ ฅํ•˜๋„๋ก ์„ค๊ณ„ํ•  ๊ฒฝ์šฐ, ์ถ”๊ฐ€ ํ›„์ฒ˜๋ฆฌ ์—†์ด CAD ๋„๋ฉด์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค.

์—ฐ๊ตฌ ๊ฐญ์€ ๋ช…ํ™•ํ•˜๋‹ค. (1) CoTโ‹…ToT๋ฅ˜ ์ผ๋ฐ˜ ํ”„๋กฌํ”„ํŠธ๋กœ๋Š” ๊ตฌ์กฐ๋„๋ฉด ์ˆ˜์ค€์˜ ์ •๋ฐ€ ์ขŒํ‘œ์™€ ๊ทœ์ • ์ค€์ˆ˜๋ฅผ ๋‹ด๋ณดํ•˜๊ธฐ ์–ด๋ ต๊ณ , (2) SVG ์ƒ์„ฑ ์—ฐ๊ตฌ๋Š” ๊ตฌ์กฐ์„ค๊ณ„-ํŠนํ™” ๊ทœ์ •(KBC ๋“ฑ)์„ ํฌํ•จํ•˜์ง€ ๋ชปํ•˜๋ฉฐ, (3) 2-D ์ธ์‹ ๊ธฐ๋ฐ˜ BIM ์—ฐ๊ตฌ๋Š” ์ƒ์„ฑ ๋‹จ๊ณ„๊นŒ์ง€ ์—ฐ๊ฒฐ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ์„ธ ์ถ•์„ ํ†ตํ•ฉํ•œ ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ(S-Prompt)๋ฅผ ์ œ์•ˆํ•˜์—ฌ, โ€œKBC ๊ทœ์ • ๋‚ด์žฅ + ์ขŒํ‘œ ์ •ํ™•๋„ ๋ณด์žฅ + SVGโ†’DXF ๋ฌด์†์‹ค ๋ณ€ํ™˜โ€์ด ๋™์‹œ์— ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ๋„๋ฉด ์ž๋™ํ™” ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด LLM์˜ ์ž ์žฌ๋ ฅ์„ ๊ตฌ์กฐ์„ค๊ณ„ ์‹ค๋ฌด์— ์‹ค์งˆ์ ์œผ๋กœ ์ด์‹ํ•˜๊ณ ์ž ํ•œ๋‹ค.

3. ๋ฐฉ๋ฒ•๋ก 

3.1 S-Prompt ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ(S-Prompt)๋ฅผ ์ด์šฉํ•˜์—ฌ LLM์ด ๊ตฌ์กฐ๋„๋ฉด ์ค‘ ๊ตฌ์กฐ ๋ถ€์žฌ ์ผ๋žŒํ‘œ ๋„๋ฉด์„ ์ƒ์„ฑํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. Fig. 1์€ ์ œ์•ˆํ•˜๋Š” ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ, ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„ โ†’ LLM ์ƒ์„ฑ โ†’ CAD ๋ณ€ํ™˜์˜ 3๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋จผ์ € ๊ตฌ์กฐ ๋ถ€์žฌ์˜ ํ˜•ํƒœ, ์น˜์ˆ˜, ์žฌ๋ฃŒ, ์ฒ ๊ทผ ์ƒ์„ธ ๋“ฑ์— ๊ด€ํ•œ ํ…์ŠคํŠธ ์ž…๋ ฅ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž‘์„ฑํ•œ๋‹ค. ์ด ํ”„๋กฌํ”„ํŠธ์—๋Š” ๋ถ€์žฌ ์ข…๋ฅ˜๋ณ„๋กœ ์ž์ฃผ ๋ณ€๊ฒฝ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ(์˜ˆ: ๋ณด์˜ ๊ธธ์ด, ํญ, ์ฒ ๊ทผ ์ง๊ฒฝ, ํ”ผ๋ณต ๋‘๊ป˜ ๋“ฑ)๋ฅผ ์Šฌ๋กฏ ํ˜•ํƒœ๋กœ ํฌํ•จ์‹œํ‚ค๊ณ , ๊ฐ์ข… ์„ค๊ณ„ ์กฐ๊ฑด๊ณผ ์ฝ”๋“œ ๊ทœ์ •(KBC)์„ ์„œ์ˆ ํ˜•์œผ๋กœ ๊ธฐ์ˆ ํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ๊ตฌ์„ฑ๋œ S-Prompt๋ฅผ LLM์— ์ž…๋ ฅํ•˜๋ฉด, LLM์€ ํ•ด๋‹น ๋ถ€์žฌ์˜ ๊ตฌ์กฐ๋„๋ฉด์„ ํ‘œํ˜„ํ•˜๋Š” SVG ์ฝ”๋“œ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ƒ์„ฑ๋œ SVG๋ฅผ DXF ๋“ฑ CAD ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์‹ค์ œ ์„ค๊ณ„ ๋„๋ฉด์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค. SVG๋ฅผ ์ค‘๊ฐ„ ์‚ฐ์ถœ๋ฌผ๋กœ ์„ ํƒํ•œ ๊ฒƒ์€ ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด CAD ๋„๋ฉด๊ณผ์˜ ์ƒํ˜ธ ์šด์šฉ์„ฑ ๋•Œ๋ฌธ์ด๋‹ค. DXF ๋“ฑ CAD ํŒŒ์ผ ํ˜•์‹์€ ๋ชจ๋“  ๋„ํ˜• ์ •๋ณด๋ฅผ ์ ˆ๋Œ€ ์ขŒํ‘œ๋กœ ๊ธฐ์ˆ ํ•˜๋ฉฐ, ์ด๋Š” SVG์˜ ์ขŒํ‘œ ๊ธฐ๋ฐ˜ ์ง€์‹œ์™€ 1:1 ๋Œ€์‘๋œ๋‹ค. ์ฆ‰ LLM์ด ๊ณง๋ฐ”๋กœ SVG ์ฝ”๋“œ ํ˜•ํƒœ๋กœ ๋„๋ฉด์„ ์ƒ์„ฑํ•˜๋ฉด, ์ถ”๊ฐ€ ํ›„์ฒ˜๋ฆฌ ์—†์ด CAD ๋„๋ฉด์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. Quint et al.(2003)๋Š” SVG๋ฅผ ์›น ํ‘œ์ค€์˜ ํ•˜๋‚˜๋กœ ์ •์˜ํ•˜์˜€๊ณ , Chen et al.(2024)๋„ SVG์˜ ํ•ด์ƒ๋„ ๋…๋ฆฝ์  ํŠน์„ฑ์„ ์‹คํ—˜์ ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ Fahiem and Farhan(2007)์€ SVG์˜ path ์š”์†Œ๋ฅผ DXF์˜ polyline ๋˜๋Š” arc ์š”์†Œ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๋ฉฐ ๋‘ ํฌ๋งท ๊ฐ„ ์–‘๋ฐฉํ–ฅ ๋ณ€ํ™˜์ด ์ •ํ™•ํžˆ ๊ฐ€๋Šฅํ•จ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์  ๊ธฐ๋ฐ˜์€ LLM ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ SVG๋กœ ๋‚ด๋ณด๋‚ธ ํ›„ CAD ํ™˜๊ฒฝ์—์„œ ์ฆ‰์‹œ ํ™œ์šฉํ•˜๋Š” ๋ณธ ์—ฐ๊ตฌ์˜ ์ ‘๊ทผ์„ ๋’ท๋ฐ›์นจํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” OpenAI GPT-4o(์ปจํ…์ŠคํŠธ ์ฐฝ โ‰ˆ 128 k tokens)์™€ Anthropic Claude 3.7 Sonnet(โ‰ˆ 200 k tokens)์„ ๋น„๊ต ๋ชจ๋ธ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค(OpenAI, 2024; Anthropic, 2024). Fig. 2์™€ ๊ฐ™์ด ๋‘ ๋ชจ๋ธ ๋ชจ ํ”„๋กฌํ”„ํŠธ์— ๊ตฌ์กฐ์„ค๊ณ„ ์ •๋ณด๋ฅผ ๋‹จ๊ณ„์ ์œผ๋กœ ํฌํ•จํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๋ฉฐ, ํŠนํžˆ Claude 3.7 Sonnet์€ Agentic Codingโ‹…์ˆ˜ํ•™ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ์—์„œ ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•ด ์ฝ”๋“œ ๊ธฐ๋ฐ˜ ๋„ํ˜• ์ƒ์„ฑ ์ž‘์—…์— ๊ฐ•์ ์„ ๋ณด์ธ๋‹ค. GPT-4o๋Š” ๊ด‘๋ฒ”์œ„ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์–ป์€ ์ „๋ฌธ ์ง€์‹โ‹…์ผ๋ฐ˜ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๊ฐ•์ ์œผ๋กœ ํ•˜๋ฏ€๋กœ, ๋‘ ๋ชจ๋ธ์˜ ์ƒํ˜ธ ๋ณด์™„์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋‘ ์‹คํ—˜์— ํฌํ•จํ•˜์˜€๋‹ค. ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„ ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ๋Š”, ๋‘ LLM์ด ๋‹จ์ˆœํ•œ ์ง€์‹œ์–ด๋งŒ์œผ๋กœ ๊ตฌ์กฐ๋„๋ฉด์„ ์ œ๋Œ€๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ํŒŒ์ผ๋Ÿฟ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์˜ˆ์‹œ๋กœ ์บ”ํ‹ธ๋ ˆ๋ฒ„ ๋ณด ๋ถ€์žฌ์˜ ๋‹จ๋ฉด ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ์„ ํ”„๋กฌํ”„ํŠธ๋กœ ์ง€์‹œํ•˜๊ณ , LLM ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์ „์— ์ค€๋น„ํ•œ ์ •๋‹ต ๋„๋ฉด(CAD ์†Œํ”„ํŠธ์›จ์–ด๋กœ ์ž‘์„ฑํ•œ ๋„๋ฉด, Fig. 3)๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด ์ดˆ๊ธฐ ์‹คํ—˜์—์„œ LLM ์ถœ๋ ฅ ๋„๋ฉด์—๋Š” ์น˜์ˆ˜ ์˜ค๋ฅ˜, ๊ฐ์ฒด ๋ˆ„๋ฝ, ๋น„ํ˜„์‹ค์ ์ธ ๋ฐฐ์น˜ ๋“ฑ์ด ๋‹ค์ˆ˜ ๋‚˜ํƒ€๋‚˜ LLM์˜ ํ™˜๊ฐ ํ˜„์ƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ฆ‰, ๋ชจ๋ธ์ด ๋ถ€์žฌ ๊ฐ„ ์ •ํ™•ํ•œ ๊ณต๊ฐ„์  ์ถ”๋ก ์—๋Š” ํ•œ๊ณ„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ณง๋ฐ”๋กœ ๊ตฌ์กฐ ์„ค๊ณ„๋„๋ฉด์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ์—ฐ๊ตฌ๋Š” ํ”„๋กฌํ”„ํŠธ ๋‚ด์šฉ์„ ๋‹จ๊ณ„์ ์œผ๋กœ ๊ตฌ์กฐํ™”ํ•˜๊ณ  ๋ชจ๋ธ ์ถœ๋ ฅ์˜ ์˜ค๋ฅ˜ ํŒจํ„ด์„ ๊ต์ •ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ S-Prompt๋ฅผ ๊ฐœ์„ ํ•ด ๋‚˜๊ฐ”๋‹ค. ๊ตฌ์ฒด์ ์ธ S-Prompt ์„ค๊ณ„ ์ „๋žต ๋ฐ ์„ฑ๋Šฅ ๊ฐœ์„  ํšจ๊ณผ๋Š” ์•„๋ž˜ ์‹คํ—˜ ๊ฒฐ๊ณผ์—์„œ ์ƒ์„ธํžˆ ๋‹ค๋ฃฌ๋‹ค.

Fig. 1 Endโ€‘toโ€‘end pipeline for automatic structuralโ€‘drawing generation using the proposed Sโ€‘Prompt methodology: prompt construction, LLM drawing synthesis, and CAD file conversion

../../Resources/ksm/jksmi.2025.29.4.60/fig1.png

Fig. 2 Task-wise accuracy (%) for Claude 3.7 Sonnet vs GPT-4o on coding, math, reasoning, and multimodal benchmarks (โ‰ˆ3 000 tests each), recompiled from public reports (Anthropic, Vellum AI, LMSYS; 2025)

../../Resources/ksm/jksmi.2025.29.4.60/fig2.png

Fig. 3 Groundโ€‘truth CAD crossโ€‘section of a reinforcedโ€‘concrete cantilever beam used as the reference for quantitative evaluation

../../Resources/ksm/jksmi.2025.29.4.60/fig3.png

3.2 ํ”„๋กฌํ”„ํŠธ ๊ตฌ์กฐ ๋ฐ ์ œ์•ฝ์กฐ๊ฑด ์„ค๊ณ„

S-Prompt์˜ ๊ถ๊ทน์ ์ธ ๋ชฉํ‘œ๋Š” ํ•˜๋‚˜์˜ ํ”„๋กฌํ”„ํŠธ๋งŒ์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ ๋ถ€์žฌ ๋„๋ฉด์„ ์ž๋™ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ถ€์žฌ์˜ ์†์„ฑ ์ •๋ณด์™€ ์„ค๊ณ„ ์กฐ๊ฑด์„ ํ”„๋กฌํ”„ํŠธ ๋‚ด์— ๊ณ„์ธต์ ์ธ ์Šฌ๋กฏ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋ถ€์žฌ์˜ ๋‹จ๋ฉด ์น˜์ˆ˜, ๋ฐฐ๊ทผ ๋ฐฉ์‹, ์ฒ ๊ทผ ๊ฐœ์ˆ˜, ํ”ผ๋ณต ๋‘๊ป˜ ๋“ฑ ์ž์ฃผ ๋ณ€๊ฒฝ๋˜๋Š” ๋ณ€์ˆ˜๋“ค์„ ์‹๋ณ„ํ•˜์—ฌ ๋ณ„๋„์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์ž…๋ ฅ๋ถ€๋กœ ๋งŒ๋“ค๊ณ , ์‚ฌ์šฉ์ž๊ฐ€ ํ”„๋กฌํ”„ํŠธ ํ…์ŠคํŠธ๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

์ดˆ๊ธฐ ๋ฒ„์ „์˜ ํ”„๋กฌํ”„ํŠธ์—์„œ๋Š” ์ด์™€ ๊ฐ™์€ ๊ฐ€๋ณ€ ํŒŒ๋ผ๋ฏธํ„ฐ ์Šฌ๋กฏ๋“ค์„ ํ”„๋กฌํ”„ํŠธ ํ•˜๋‹จ์— ๋ฐฐ์น˜ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋ ‡๊ฒŒ ์„ค๊ณ„ํ•œ ๊ฒฝ์šฐ, LLM์ด ํ”„๋กฌํ”„ํŠธ ์•ž๋ถ€๋ถ„์˜ ๋งฅ๋ฝ์— ์น˜์ค‘ํ•˜๋Š” ๊ฒฝํ–ฅ ๋•Œ๋ฌธ์— ๋ถ€์žฌ ์กฐ๊ฑด์ด๋‚˜ ์ฒ ๊ทผ ์„ธ๋ถ€์‚ฌํ•ญ์ด ์ผ๋ถ€ ๋ˆ„๋ฝ๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ์ด๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์ด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ํ•ด์„ํ•˜๋ฉด์„œ ์•ž๋ถ€๋ถ„ ์ •๋ณด์— ๋” ๋†’์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋‘๋Š” ์ฒ˜๋ฆฌ ๋ฐฉ์‹๊ณผ ๊ด€๋ จ๋œ๋‹ค. ์‹ค์ œ๋กœ Kwon et al.(2025) ์˜ ์—ฐ๊ตฌ์—์„œ๋„ ์ฃผ์š” ์ง€์‹œ์–ด๋ฅผ ํ”„๋กฌํ”„ํŠธ ์ƒ๋‹จ์— ๋ฐฐ์น˜ํ•  ๊ฒฝ์šฐ ๋ชจ๋ธ ์ •ํ™•๋„๊ฐ€ ์ƒ์Šนํ•œ๋‹ค๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋ณด๊ณ ๋œ ๋ฐ” ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์„ ํ–‰ ์ง€์‹์„ ์ฐธ๊ณ ํ•˜์—ฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋„ ํ”„๋กฌํ”„ํŠธ ๊ตฌ์กฐ๋ฅผ ์กฐ์ •ํ•˜์˜€๋‹ค. ํŒŒ๋ผ๋ฏธํ„ฐ ์ž…๋ ฅ๋ถ€๋ฅผ ํ”„๋กฌํ”„ํŠธ ์ตœ์ƒ๋‹จ์œผ๋กœ ์žฌ๋ฐฐ์น˜ํ•œ ์ดํ›„, ๋™์ผํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ LLM์˜ ํ•ด์„ ์ •ํ™•๋„๊ฐ€ ํ–ฅ์ƒ๋˜์—ˆ๊ณ  ๋„๋ฉด์—์„œ ์ขŒํ‘œ ์˜ค๋ฅ˜๋‚˜ ๋ถ€์žฌ ๋ˆ„๋ฝ๊ณผ ๊ฐ™์€ ๋ฌธ์ œ๊ฐ€ ํ˜„์ €ํžˆ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ฆ‰, ์ค‘์š” ๋ณ€์ˆ˜๋ฅผ ํ”„๋กฌํ”„ํŠธ ์•ž๋ถ€๋ถ„์— ๋ฐฐ์น˜ํ•˜๋Š” ๋‹จ์ˆœํ•œ ์กฐ์น˜๋งŒ์œผ๋กœ๋„ ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ ์ •ํ™•๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.

๋‹ค์Œ์œผ๋กœ, ๋„๋ฉด์ƒ์˜ ์˜์—ญ ๊ตฌ๋ถ„์„ ์ž์—ฐ์–ด ๋Œ€์‹  ์ •๋Ÿ‰์  ์ˆ˜์น˜๋กœ ์ œ์‹œํ•˜๋Š” ์ „๋žต์„ ๋„์ž…ํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ํ”„๋กฌํ”„ํŠธ๋Š” โ€œ๋งจ ์œ„โ€, โ€œ์™ผ์ชฝ ์•„๋ž˜โ€, โ€œ์šฐ์ธก ์•„๋ž˜โ€ ๋“ฑ ์œ„์น˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋‹จ์–ด๋กœ ๋ถ€์žฌ ๋ฐฐ์น˜๋ฅผ ์ง€์‹œํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์• ๋งค๋ชจํ˜ธํ•œ ๊ณต๊ฐ„ ํ‘œํ˜„ ๋•Œ๋ฌธ์— LLM์ด ๋„๋ฉด ์š”์†Œ ๊ฐ„ ๊ฒฝ๊ณ„๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ํ•ด์„ํ•˜์ง€ ๋ชปํ•˜์—ฌ ๋ถ€์žฌ ๊ฐ„ ์นจ๋ฒ” ๋˜๋Š” ๊ฒน์นจ ์˜ค๋ฅ˜๊ฐ€ ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ–ˆ๋‹ค. Claude 3.7 Sonnet๊ณผ GPT-4o ๋ชจ๋ธ ๋ชจ๋‘ ์ž์—ฐ์–ด๋กœ ํ‘œํ˜„๋œ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ •ํ™•ํžˆ ์ขŒํ‘œ๊ณ„์— ๋Œ€์‘์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ๋Š” ํ”„๋กฌํ”„ํŠธ๋ฅผ ์žฌ์„ค๊ณ„ํ•˜๋ฉด์„œ, ์˜ˆ๋ฅผ ๋“ค์–ด โ€œ์ „์ฒด ๋„ˆ๋น„์˜ 0โˆผ25% ์˜์—ญ์— ๋ถ€์žฌ A๋ฅผ ๋ฐฐ์น˜โ€์™€ ๊ฐ™์ด ์ ˆ๋Œ€์  ์ขŒํ‘œ ๋น„์œจ์„ ํ™œ์šฉํ•œ ๋ช…์‹œ์  ๊ฒฝ๊ณ„ ์กฐ๊ฑด์„ ํ”„๋กฌํ”„ํŠธ์— ํฌํ•จ์‹œ์ผฐ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, Fig. 4์˜ ๋ฐ˜๋ณต ์ƒ์„ฑ ์‹คํ—˜์—์„œ ๋ถ€์žฌ ๊ฐ„ ์ถฉ๋Œ๋ฅ ์ด ํฌ๊ฒŒ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Š” LLM์ด ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ๋ง‰์—ฐํ•œ ์ž์—ฐ์–ด๊ฐ€ ์•„๋‹Œ ์ˆ˜์น˜์ ์ธ ๋ฒกํ„ฐ ์ฐจ์›์œผ๋กœ ํ•ด์„ํ•˜๋„๋ก ์œ ๋„ํ•จ์œผ๋กœ์จ, ์ •ํ™•ํ•œ ํ‰๋ฉด ๋ฐฐ์น˜์™€ ๋ถ€์žฌ ๊ฐ„ ๊ฐ„์„ญ ์ตœ์†Œํ™”๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ฆ‰, ๊ธฐํ•˜ํ•™์  ์œ„์น˜ ์šฉ์–ด์— ์ˆ˜์น˜ ๊ธฐ๋ฐ˜ ์กฐ๊ฑด์„ ๊ฒฐํ•ฉํ•˜๋Š” ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„๋Š” ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ์—์„œ ๋งค์šฐ ํšจ๊ณผ์ ์ธ ์ „๋žต์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ์ฒ ๊ทผ ํ”ผ๋ณต๋‘๊ป˜ ๋“ฑ ์ˆ˜ํ•™์  ์ ‘ํ•ฉ ์กฐ๊ฑด์˜ ํ”„๋กฌํ”„ํŠธ ํ‘œํ˜„์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. S-Prompt ์ดˆ์•ˆ์—์„œ๋Š” โ€œ์Šคํ„ฐ๋Ÿฝ๊ณผ ์ฃผ๊ทผ์ด ๋งž๋‹ฟ์•„์•ผ ํ•œ๋‹คโ€๋Š” ์‹์œผ๋กœ ์ž์—ฐ์–ด ์ง€์‹œ์–ด๋กœ๋งŒ ํ•ด๋‹น ์กฐ๊ฑด์„ ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ชจ๋ธ์€ โ€˜๋งž๋‹ฟ๋Š”๋‹คโ€™๋ฅผ ๋‹จ์ˆœํžˆ โ€˜๋งค์šฐ ๊ทผ์ ‘ํ•จโ€™์œผ๋กœ ์ดํ•ดํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์—ฌ, ์ถœ๋ ฅ ๋„๋ฉด์—์„œ ์ฃผ๊ทผ์ด ์Šคํ„ฐ๋Ÿฝ ๋‚ด๋ฉด์—์„œ ๋–จ์–ด์ง„ ์œ„์น˜์— ๋ฐฐ์น˜๋˜๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋ฐ˜๋ณต๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๊ทผ์„ ์›(circle), ์Šคํ„ฐ๋Ÿฝ์„ ์ง์„ (line) ํ˜•์ƒ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๋‘ ์š”์†Œ์˜ ๊ด€๊ณ„๋ฅผ โ€œ์›๊ณผ ์ง์„ ์ด ์ ‘ํ•œ๋‹คโ€๋Š” ๊ธฐํ•˜ํ•™์  ์ ‘์„  ์กฐ๊ฑด์œผ๋กœ ๋ช…์‹œํ•˜์˜€๋‹ค. ํ•„์š”์‹œ ๊ด€๋ จ ์ˆ˜์‹๋„ ํ•จ๊ป˜ ์ œ์‹œํ•˜์—ฌ ๋ชจ๋ธ์ด ํ•ด๋‹น ์ ‘์ด‰ ์กฐ๊ฑด์„ ๋”์šฑ ๋ช…ํ™•ํžˆ ์ธ์‹ํ•˜๋„๋ก ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ฐ•ํ™”ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฃผ๊ทผ์ด ์Šคํ„ฐ๋Ÿฝ ๋‚ด๋ฉด์— ์ •ํ™•ํžˆ ์ ‘ํ•˜๋Š” ๋‹จ๋ฉด ๋„๋ฉด์˜ ์ƒ์„ฑ๋ฅ ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค.

Fig. 4๋Š” ๋™์ผํ•œ S-Prompt๋ฅผ ์ด์šฉํ•ด ์ž๋™ ์ƒ์„ฑํ•œ RC๋ณด ๋‹จ๋ฉด ๋„๋ฉด์„ Case 1โˆผ3 ์ˆœ์„œ๋Œ€๋กœ ์ƒ๋‹จ์— Claude 3.7 Sonnet, ํ•˜๋‹จ์—๋Š” GPT-4o ๊ฒฐ๊ณผ๋ฅผ ๋‚˜๋ž€ํžˆ ๋ฐฐ์น˜ํ•œ ๊ฒƒ์ด๋‹ค. Claude ๋ชจ๋ธ์€ ๊ฐ Case์—์„œ ์ž…๋ ฅํ•œ ๋‹จ๋ฉด ์น˜์ˆ˜(300x400 mm, 300x400 mm, 600x600 mm), ํ”ผ๋ณต ๋‘๊ป˜(25 mm), ์ƒํ•˜๋ถ€ ์ฒ ๊ทผ ์ง๊ฒฝ ๋ฐ ๊ฐœ์ˆ˜๋ฅผ ์™„์ „ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๋ฉฐ, ์Šคํ„ฐ๋Ÿฝ๊ณผ ์ฃผ๊ทผ์ด ์ง€์ •๋œ ์ ‘์„  ์กฐ๊ฑด์„ ์ •ํ™•ํžˆ ๋งŒ์กฑํ•ด ๋ถ€์žฌ ๊ฐ„ ๊ฐ„์„ญ์ด๋‚˜ ๋ฐฐ์น˜ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋ฐ˜๋ฉด GPT ๋ชจ๋ธ์€ Case 1์—์„œ ํ…Œ๋‘๋ฆฌ์„  ๋ˆ„๋ฝ, Case 2,3 ์—์„œ๋Š” ํ•˜๋ถ€ ์ฃผ๊ทผ ๋ฐฐ์น˜์˜ค๋ฅ˜๋กœ, ์ž…๋ ฅ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์ค€์ˆ˜ํ•˜์ง€ ๋ชปํ•˜๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ Fig. 4๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€๋™ ์‹คํ—˜์—์„œ๋„ Claude 3.7 sonnet์ด ๋„๋ฉด์„ ์•ˆ์ •์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๋ฐ˜๋ฉด GPT-4o๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋นˆ๋ฒˆํ•จ์„ ํ•œ๋ˆˆ์— ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.

์ด์ฒ˜๋Ÿผ ๊ธฐํ•˜ํ•™์  ์šฉ์–ด์™€ ์ˆ˜์น˜ ๊ธฐ๋ฐ˜ ์กฐ๊ฑด์„ ๋ณ‘ํ–‰ํ•˜์—ฌ ์ œ์‹œํ•˜๋Š” ๋ฐฉ์‹์€ LLM์ด ๊ตฌ์กฐ์ ์ธ ์ ‘์ด‰ ๊ด€๊ณ„๋ฅผ ์ •ํ™•ํžˆ ํ•ด์„ํ•˜๊ณ  ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ ์œผ๋กœ ์ž‘์šฉํ•จ์„ ์‹ค์ฆํ•˜์˜€๋‹ค.

Fig. 4 Structural drawings automatically generated by Claude 3.7Sonnet (up) and GPTโ€‘4o (down) with the Sโ€‘Prompt for a reinforcedโ€‘concrete beam

../../Resources/ksm/jksmi.2025.29.4.60/fig4.png

4. ์‹คํ—˜ ๋ฐ ํ‰๊ฐ€

4.1 ์‹คํ—˜ ์„ค์ •

๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ฒ ๊ทผ์ฝ˜ํฌ๋ฆฌํŠธ ๋ณด ๋ถ€์žฌ ๋‹จ๋ฉด๋„ ์ƒ์„ฑ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ ์‹คํ—˜์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์•ž์„œ ์„ค๊ณ„ํ•œ S-Prompt๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, GPT-4o์™€ Claude 3.7 Sonnet ๋‘ ๋ชจ๋ธ์ด ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ๊ตฌ์กฐ๋„๋ฉด์„ ์ƒ์„ฑํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๊ฐ ๋ชจ๋ธ๋ณ„๋กœ ๋‚œ์ˆ˜ ์‹œ๋“œ๋ฅผ ๋ณ€๊ฒฝํ•ด๊ฐ€๋ฉฐ 200ํšŒ์”ฉ ๋ฐ˜๋ณต ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ถœ๋ ฅ์˜ ์žฌํ˜„์„ฑ๊ณผ ์•ˆ์ •์„ฑ๋„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ชจ๋“  ํ‰๊ฐ€ ์ง€ํ‘œ์— ๋Œ€ํ•ด 95% ์‹ ๋ขฐ๊ตฌ๊ฐ„์„ ๊ณ„์‚ฐํ•˜์—ฌ ๊ฒฐ๊ณผ์˜ ํ†ต๊ณ„์  ์œ ์˜์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ ์ถœ๋ ฅ์˜ ๋ณ€๋™์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ฒ€ํ† ํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค. ์ถœ๋ ฅ๋œ ๋„๋ฉด๋“ค์€ ์‚ฌ์ „์— ์ค€๋น„๋œ ์ •๋‹ต ๋„๋ฉด๊ณผ ๋Œ€์กฐํ•˜์—ฌ ์ •ํ™•๋„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋น„๊ต ํ‰๊ฐ€ ํ•ญ๋ชฉ์œผ๋กœ๋Š” (i) ๋ถ€์žฌ ๊ฐ„ ๊ตฌ์—ญ ์นจ๋ฒ” ํšŸ์ˆ˜, (ii) ๋ถ€์žฌ ์น˜์ˆ˜ ์ •๋ณด ๋ˆ„๋ฝ ๊ฐœ์ˆ˜, (iii) ์ฒ ๊ทผ ๋ฐฐ๊ทผ ๋ˆ„๋ฝ ๊ฐœ์ˆ˜, (iv) ์Šคํ„ฐ๋Ÿฝ ๋ˆ„๋ฝ ๊ฐœ์ˆ˜, ๊ทธ๋ฆฌ๊ณ  (v) ๋„๋ฉด ์ƒ์„ฑ ์‹œ๊ฐ„(์ดˆ)์„ ์„ ์ •ํ•˜์˜€๋‹ค. ๋‘ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ์— ๋Œ€ํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋‹ค์„ฏ ๊ฐ€์ง€ ํ•ญ๋ชฉ์„ ๊ณ„์ˆ˜ํ•˜๊ฑฐ๋‚˜ ์ธก์ •ํ•œ ํ›„, ๋ชจ๋ธ ๊ฐ„ ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค.

4.2 ๊ฒฐ๊ณผ ๋ฐ ์ •๋Ÿ‰ ํ‰๊ฐ€

๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. Claude 3.7 Sonnet ๋ชจ๋ธ์€ ํ‰๊ท  1.2ํšŒ์˜ ๋ถ€์žฌ ๊ฐ„ ๊ตฌ์—ญ ์นจ๋ฒ”, 0.4๊ฐœ์˜ ์น˜์ˆ˜ ์ •๋ณด ๋ˆ„๋ฝ, 0.65๊ฐœ์˜ ์ฒ ๊ทผ ๋ฐฐ๊ทผ ๋ˆ„๋ฝ, 0.5๊ฐœ์˜ ์Šคํ„ฐ๋Ÿฝ ๋ˆ„๋ฝ์„ ๋ณด์˜€๊ณ , ํ‰๊ท  44.77์ดˆ์˜ ์ƒ์„ฑ ์‹œ๊ฐ„์„ ๊ธฐ๋กํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด GPT-4o ๋ชจ๋ธ์€ ํ‰๊ท  2.2ํšŒ์˜ ๊ตฌ์—ญ ์นจ๋ฒ”, 4.35๊ฐœ์˜ ์น˜์ˆ˜ ์ •๋ณด ๋ˆ„๋ฝ, 4.75๊ฐœ์˜ ์ฒ ๊ทผ ๋ฐฐ๊ทผ ๋ˆ„๋ฝ, 17.0๊ฐœ์˜ ์Šคํ„ฐ๋Ÿฝ ๋ˆ„๋ฝ์„ ๋ณด์—ฌ ์ƒ์„ฑ ์‹œ๊ฐ„์€ ํ‰๊ท  56.67์ดˆ๊ฐ€ ์†Œ์š”๋˜์—ˆ๋‹ค. Fig. 5๋Š” ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ์ •๋ฆฌํ•˜์—ฌ ๋‘ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ํ•œ๋ˆˆ์— ๋ณด์—ฌ์ค€๋‹ค. ๊ฐ ํ‰๊ฐ€ ํ•ญ๋ชฉ๋ณ„ ์ •ํ™•๋„ ๋‹ฌ์„ฑ๋ฅ ๋กœ ํ™˜์‚ฐํ•˜๋ฉด, Claude 3.7 Sonnet์€ ๋ถ€์žฌ ๊ฐ„ ๊ฐ„์„ญ ๊ด€๋ฆฌ85.0%, ์น˜์ˆ˜ ์ •๋ณด ํ‘œํ˜„ 96.7%, ์ฒ ๊ทผ ๋ฐฐ๊ทผ ์ •ํ™•๋„ 91.9%, ์Šคํ„ฐ๋Ÿฝ ์ฒ ๊ทผ ์ฒ˜๋ฆฌ 97.6%๋กœ, 4๊ฐœ ํ•ญ๋ชฉ ํ‰๊ท  92.8%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด GPT-4o๋Š” ๋™์ผ ํ•ญ๋ชฉ์—์„œ ๊ฐ๊ฐ 72.5%, 63.8%, 40.6%, 19.1%์— ๊ทธ์ณ, ํ‰๊ท  49.0% ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ Claude 3.7 Sonnet ๋ชจ๋ธ์€ ๋ชจ๋“  ํ‰๊ฐ€ ํ•ญ๋ชฉ์—์„œ GPT-4o ๋ชจ๋ธ๋ณด๋‹ค ํ˜„์ €ํžˆ ๋†’์€ ์ •ํ™•๋„์™€ ์•ˆ์ •์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ํŠนํžˆ ์Šคํ„ฐ๋Ÿฝ ์ฒ ๊ทผ ๋ฐฐ์น˜ ์ •ํ™•๋„์˜ ๊ฒฝ์šฐ Claude 3.7 Sonnet์ด 97.6%์ธ ๋ฐ ๋ฐ˜ํ•ด GPT-4o๋Š” 19.1%์— ๋ถˆ๊ณผํ•˜์—ฌ, ์•ฝ 78.5%p์˜ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ตฌ์กฐ๋„๋ฉด๊ณผ ๊ฐ™์ด ์„ธ๋ฐ€ํ•œ ์ œ์•ฝ์กฐ๊ฑด์ด ๋งŽ์€ ์ƒ์„ฑ ์ž‘์—…์—์„œ ๋ชจ๋ธ ๊ฐ„ ์„ฑ๋Šฅ ๊ฒฉ์ฐจ๊ฐ€ ํด ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, Claude 3.7 Sonnet์˜ ์šฐ์ˆ˜ํ•œ ์ฝ”๋“œ ์ƒ์„ฑ ๋ฐ ์ˆ˜์น˜ ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์ด ์ฃผ๋œ ์›์ธ์œผ๋กœ ํŒŒ์•…๋˜์—ˆ๋‹ค. Anthropic(2025)์˜ ๊ณต์‹ ๋ชจ๋ธ ์นด๋“œ์— ๋”ฐ๋ฅด๋ฉด, Claude 3.7 Sonnet์€ SWE-bench, TAU-bench ๋“ฑ ์‹ค์ œ ์ฝ”๋”ฉ ๋ฐ ์ˆ˜ํ•™ ๊ณผ์ œ ๊ธฐ๋ฐ˜ ๋ฒค์น˜๋งˆํฌ์—์„œ ๋™๊ธ‰ ๋ชจ๋ธ ์ค‘ ์ตœ๊ณ  ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ S-Prompt๋Š” ์—ฌ๋Ÿฌ ์ขŒํ‘œ ์‚ฐ์ถœ์‹ ๊ธฐ๋ฐ˜ ์ง€์‹œ์–ด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด โ€œ์Šคํ„ฐ๋Ÿฝ ์ฒ ๊ทผ์€ ์ธ์žฅ ์ฒ ๊ทผ ์ค‘์‹ฌ์—์„œ ์ฒ ๊ทผ ์ง€๋ฆ„์˜ ์ ˆ๋ฐ˜๋งŒํผ ์ด๊ฒฉํ•œ๋‹คโ€์™€ ๊ฐ™์€ ์—ฐ์‚ฐ ์ง€์นจ์ด ๋„๋ฉด ์ƒ์„ฑ์— ์š”๊ตฌ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ง€์นจ์„ ์ •ํ™•ํžˆ ์‹คํ–‰ํ•˜๋ ค๋ฉด, ๋ชจ๋ธ์ด ์ž…๋ ฅ ๋ฌธ์žฅ์„ ์ˆ˜ํ•™์‹์œผ๋กœ ์ดํ•ดํ•˜์—ฌ ์ ์ ˆํ•œ SVG ๊ฒฝ๋กœ(path) ์ฝ”๋“œ๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. Zou et al.(2024)์˜ VGBench ์‹คํ—˜์—์„œ๋„ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋ณด๊ณ ๋˜์—ˆ๋Š”๋ฐ, ์ฝ”๋“œ ๋ฐ ์ˆ˜๋ฆฌ ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ๋›ฐ์–ด๋‚œ LLM์ผ์ˆ˜๋ก ๋ฒกํ„ฐ ๊ทธ๋ž˜ํ”ฝ ์ƒ์„ฑ ์ •ํ™•๋„๊ฐ€ ๋†’์•˜๋‹ค. Claude 3.7 Sonnet ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ์ฝ”๋”ฉ ๋ฐ ์ˆ˜์น˜ ๊ณ„์‚ฐ ์ธก๋ฉด์—์„œ GPT-4o๋ณด๋‹ค ๊ฐ•์ ์„ ๋ณด์˜€๊ณ , ์ด๋Š” ๊ตฌ์กฐ๋„๋ฉด ์ƒ์„ฑ ์ •ํ™•๋„์˜ ํฐ ๊ฒฉ์ฐจ๋กœ ์ด์–ด์กŒ๋‹ค. ํ•œํŽธ GPT-4o ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๋™์ผํ•œ ์ž…๋ ฅ์— ๋Œ€ํ•ด์„œ๋„ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ์ผ๋ถ€ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๋†“์น˜๋Š” ๊ฒฝํ–ฅ์ด ๊ด€์ฐฐ๋˜์—ˆ๋Š”๋ฐ, ์ด๋Š” ๋ชจ๋ธ์˜ ๋งฅ๋ฝ ํ™œ์šฉ ํšจ์œจ์„ฑ์ด ๋‚ฎ์€ ๋ฐ ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

ํ”„๋กฌํ”„ํŠธ ๊ตฌ์กฐํ™”์— ๋”ฐ๋ฅธ ํšจ๊ณผ๋„ ๋ถ„์„ํ•˜์˜€๋‹ค. Fig. 6์€ ์ž…๋ ฅ ํ”„๋กฌํ”„ํŠธ์˜ ํ† ํฐ ์ˆ˜ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ๋‘ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ์ •ํ™•๋„ ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ทธ๋ž˜ํ”„์ด๋‹ค. ํ”„๋กฌํ”„ํŠธ ๊ธธ์ด๋ฅผ ์•ฝ 1500 ํ† ํฐ์—์„œ 2289 ํ† ํฐ์œผ๋กœ ์ฆ๊ฐ€์‹œ์ผฐ์„ ๋•Œ Claude 3.7 Sonnet์˜ ์ •ํ™•๋„๋Š” 55.4% โ†’ 92.8%๋กœ +37.4%p ํ–ฅ์ƒ๋œ ๋ฐ˜๋ฉด, GPT-4o๋Š” 35.6% โ†’ 49.0%๋กœ +13.4%p ์ƒ์Šนํ•˜๋Š” ๋ฐ ๊ทธ์ณค๋‹ค. ํŠนํžˆ Claude 3.7 Sonnet์€ ์ž…๋ ฅ ํ† ํฐ ์ˆ˜๊ฐ€ ์•ฝ 1647 tokens๋ฅผ ๋„˜์–ด์„œ๋Š” ์ง€์ ๋ถ€ํ„ฐ ์ •ํ™•๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ํ–ฅ์ƒ๋œ ๋ฐ˜๋ฉด, GPT-4o๋Š” ์ „์ฒด ๊ตฌ๊ฐ„์—์„œ ์ •ํ™•๋„ ๋ณ€ํ™”๊ฐ€ ๋ฏธ๋ฏธํ•˜์˜€๋‹ค. ์ด๋Š” Claude ๋ชจ๋ธ์ด ๊ธด ํ”„๋กฌํ”„ํŠธ๋กœ๋ถ€ํ„ฐ ์œ ์˜๋ฏธํ•œ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด์„ํ•˜์—ฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์œผ๋กœ ์—ฐ๊ฒฐ์‹œํ‚ค๋Š” ๋ฐ˜๋ฉด, GPT-4o๋Š” ๋™์ผํ•œ ์ถ”๊ฐ€ ์ •๋ณด์— ๋Œ€ํ•œ ํ™œ์šฉ๋ฅ ์ด ๋‚ฎ๋‹ค๋Š” ์ ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” Liu et al.(2024)๊ณผ Hosseini et al.(2025) ์˜ ์ง€์ ๊ณผ ๋งฅ๋ฝ์„ ๊ฐ™์ดํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ LLM์€ ์ œ๊ณต๋œ ๊ธด ์ปจํ…์ŠคํŠธ์˜ ์ ˆ๋ฐ˜ ์ดํ•˜๋งŒ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•˜๋ฉฐ, ์ •๋ณด๊ฐ€ ํ”„๋กฌํ”„ํŠธ ๋‚ด ์–ด๋””์— ์œ„์น˜ํ•˜๋Š”์ง€์— ๋”ฐ๋ผ ๋ชจ๋ธ์˜ ์‘๋‹ต ์ •ํ™•๋„๊ฐ€ ๋‹ฌ๋ผ์ง€๋Š” ์ด๋ฅธ๋ฐ” ๊ธธ์ด ๋ฏผ๊ฐ์„ฑ(length sensitivity) ํ˜„์ƒ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Claude 3.7 Sonnet์˜ ๊ฒฝ์šฐ ๊ธด ์ž…๋ ฅ์˜ ์ค‘๊ฐ„ ๋ถ€๋ถ„์— ์žˆ๋Š” ์ •๋ณด๊นŒ์ง€ ๋น„๊ต์  ์•ˆ์ •์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ์ถœ๋ ฅ์— ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ์ค‘์žฅ๋ฌธ์˜ ํ”„๋กฌํ”„ํŠธ ํ™˜๊ฒฝ์—์„œ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. Claude ๋ชจ๋ธ์˜ ์ด๋Ÿฌํ•œ ์ฒ˜๋ฆฌ ์•ˆ์ •์„ฑ๊ณผ ์ •๋ณด ํ™œ์šฉ ํšจ์œจ์„ฑ์€ ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฒ•์˜ ํšจ๊ณผ๋ฅผ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ฒฐ๊ตญ ๊ตฌ์กฐ๋„๋ฉด ์ž๋™ํ™” ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” LLM์˜ ์ปจํ…์ŠคํŠธ ์ฐฝ ํฌ๊ธฐ ์ž์ฒด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ฆ๊ฐ€๋œ ์ž…๋ ฅ์„ ์‹ค์ œ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ์—ญ๋Ÿ‰์ด ์ค‘์š”ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ ์ ์šฉ ์—ฌ๋ถ€์— ๋”ฐ๋ฅธ ์ถœ๋ ฅ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. Fig. 7์€ ๋™์ผํ•œ ๊ตฌ์กฐ ๋ถ€์žฌ์— ๋Œ€ํ•ด ์ผ๋ฐ˜ ํ”„๋กฌํ”„ํŠธ์™€ ๊ตฌ์กฐํ™”๋œ S-Prompt๋ฅผ ์ ์šฉํ•˜์—ฌ ์–ป์€ ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ์ผ๋ฐ˜ ํ”„๋กฌํ”„ํŠธ์˜ ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ์ผ๋ถ€ ์ฒ ๊ทผ ๋ฐฐ์น˜๋ฅผ ๋ˆ„๋ฝํ•˜๊ฑฐ๋‚˜ ์น˜์ˆ˜๋ฅผ ์ž˜๋ชป ๊ธฐ์ž…ํ•˜๋Š” ๋“ฑ์˜ ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•œ ๋ฐ˜๋ฉด, S-Prompt๋ฅผ ์ ์šฉํ•œ ๊ฒฝ์šฐ ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๊ฐ€ ์ƒ๋‹น ๋ถ€๋ถ„ ๊ฐœ์„ ๋˜์—ˆ๋‹ค. ํŠนํžˆ ์•ž์„œ 3์žฅ์—์„œ ๋…ผ์˜ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ƒ๋‹จ ๋ฐฐ์น˜, ์˜์—ญ ์ขŒํ‘œํ™”, ์ˆ˜ํ•™์  ์กฐ๊ฑด ๋ถ€์—ฌ์™€ ๊ฐ™์€ S-Prompt ์ „๋žต๋“ค์ด ๊ฒฐํ•ฉ๋˜์–ด, ์ฒ ๊ทผ ๊ฐ„๊ฒฉ ๋ฐ ํ”ผ๋ณต๋‘๊ป˜ ๋“ฑ์˜ ์„ธ๋ถ€ ์กฐ๊ฑด๊นŒ์ง€ ์ •ํ™•ํžˆ ์ถฉ์กฑํ•˜๋Š” ๋„๋ฉด์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ •๋Ÿ‰์ ์œผ๋กœ๋„ S-Prompt ์ ์šฉ ์‹œ ์ถœ๋ ฅ ์ •ํ™•๋„๊ฐ€ ์œ ์˜๋ฏธํ•˜๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๋Š”๋ฐ, ์ด๋Š” S-Prompt๊ฐ€ LLM์˜ ํ™˜๊ฐ๊ณผ ์ •๋ณด ๋ˆ„๋ฝ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•จ์„ ๋’ท๋ฐ›์นจํ•œ๋‹ค. ๊ฒฐ๊ตญ ๊ตฌ์กฐํ™” ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฒ•์€ ๋ณต์žกํ•œ ๊ตฌ์กฐ์„ค๊ณ„ ์ œ์•ฝ์„ LLM์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ˜•ํƒœ๋กœ ์ „๋‹ฌํ•จ์œผ๋กœ์จ, ๋„๋ฉด ์ƒ์„ฑ ํ’ˆ์งˆ์„ ํฌ๊ฒŒ ๋†’์ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

Fig. 5 Quantitative evaluation of generated drawings: mean error counts per category (area collision, missing dimensions, rebar omissions, stirrup omissions) and average generation time (n=200 runs, 95%CI)

../../Resources/ksm/jksmi.2025.29.4.60/fig5.png

Fig. 6 Prompt length vs. drawing Accuracy Score (%) for Claude 3.7 Sonnet and GPT-4o. Markers average 10 drawings per token size; score per Fig. 5 (1 - mean errors / 8 ร— 100)

../../Resources/ksm/jksmi.2025.29.4.60/fig6.png

Fig. 7 Impact of Structured Prompting (Sโ€‘Prompt) versus vanilla prompting on drawing fidelity; outputs correspond to the same beam specification

../../Resources/ksm/jksmi.2025.29.4.60/fig7.png

5. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋„๋ฉด ์ž๋™ํ™”๊ฐ€ ์‹ค๋ฌด์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •๋ฐ€๋„์™€ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹คํ—˜์ ์œผ๋กœ ์ž…์ฆํ•˜์˜€๋‹ค. ํŠนํžˆ Claude 3.7 Sonnet๊ณผ GPT-4o๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ ๋น„๊ต ์‹คํ—˜์„ ํ†ตํ•ด, ๊ตฌ์กฐํ™”๋œ ์ž…๋ ฅ ๋ฐฉ์‹์ธ S-Prompt๊ฐ€ ๋„๋ฉด ์ƒ์„ฑ ์ •ํ™•๋„, ์ •๋ณด ์™„์„ฑ๋„, ์ขŒํ‘œ ์ผ๊ด€์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์—์„œ ์ถœ๋ ฅ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ด์„ ํ™•์ธํ•˜์˜€๋‹ค. S-Prompt๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ช…์‹œ์  ์„ ์–ธ, ์ˆ˜์น˜ ๊ธฐ๋ฐ˜ ๋ฐฐ๊ทผ ์กฐ๊ฑด, ํ˜•์ƒ ์ถœ๋ ฅ ์ ˆ์ฐจ ์š”์•ฝ ๋“ฑ์„ ํ†ตํ•ด LLM์˜ ํ™˜๊ฐ ํ˜„์ƒ๊ณผ ์ •๋ณด ๋ˆ„๋ฝ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•˜์˜€์œผ๋ฉฐ, ๋ชจ๋ธ ํŠน์„ฑ์— ๋งž๊ฒŒ ํ”„๋กฌํ”„ํŠธ ์กฐ์ •๋งŒ์œผ๋กœ๋„ ๋„๋ฉด ์ƒ์„ฑ ์„ฑ๋Šฅ์— ํฐ ์ฐจ์ด๋ฅผ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ๋‹จ์ผ LLM์— ์˜์กดํ•˜๋Š” ๋ฐฉ์‹๋ณด๋‹ค, ์‚ฌ์šฉ ๋ชฉ์ ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ LLM์„ ํ‰๊ฐ€โ‹…์กฐํ•ฉํ•˜๊ณ  ๊ฐ ๋ชจ๋ธ์— ์ตœ์ ํ™”๋œ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ ์šฉํ•˜๋Š” ์ „๋žต์ด ๊ฑด์ถ• ์„ค๊ณ„ ์ž๋™ํ™”์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋‹จ์ง€ ๊ตฌ์กฐ ๋„๋ฉด ์ž๋™ํ™” ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆํ•œ ๋ฐ ๊ทธ์น˜์ง€ ์•Š๋Š”๋‹ค. ๊ฑด์ถ• ๊ตฌ์กฐ์„ค๊ณ„ ์—…๋ฌด๋Š” ๋ฐ˜๋ณต์„ฑ๊ณผ ๊ทœ์น™์„ฑ์ด ๋†’์€ ์ž‘์—…์ด๋ฏ€๋กœ, LLM ๊ธฐ์ˆ ์ด ๊ฐ€์žฅ ๋จผ์ € ์‹ค๋ฌด ๋„์ž…์ด ๊ฐ€๋Šฅํ•  ๋ถ„์•ผ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ผ๋ จ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ, ๊ฑด์ถ• ๋ถ„์•ผ์—์„œ๋„ LLM ๊ธฐ์ˆ ์ด ์ถฉ๋ถ„ํžˆ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด์ œ ๊ฑด์ถ•์„ค๊ณ„์ „๋ฐ˜์— ์ธ๊ณต์ง€๋Šฅ(AI) ๊ธฐ์ˆ ์„ ๋„์ž…ํ•˜๊ธฐ์— ์ ์ ˆํ•œ ์‹œ๊ธฐ๋ผ๊ณ  ํŒ๋‹จ๋œ๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด LLM ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋„๋ฉด ์ž๋™ํ™”์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ œ์•ˆ๋œ S-Prompt ์ ‘๊ทผ๋ฒ•์ด ํ–ฅํ›„ ๊ฑด์ถ•์„ค๊ณ„ ์ž๋™ํ™” ๋ถ„์•ผ์—์„œ ๋†’์€ ์‹ค์šฉ์„ฑ๊ณผ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ์„ ์ง€๋‹ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋‹ค์–‘ํ•œ LLM ๋ชจ๋ธ์„ ์šฉ๋„์™€ ํŠน์„ฑ์— ๋งž๊ฒŒ ์„ ํƒํ•˜๊ณ , ์ด๋ฅผ S-Prompt๋กœ ์ •๋ฐ€ ์ œ์–ดํ•˜๋Š” ๋ฐฉ์‹์€ ํ–ฅํ›„ ๊ฑด์ถ• ์‚ฐ์—…์˜ ์ƒ์‚ฐ์„ฑ๊ณผ ์ •๋ฐ€๋„๋ฅผ ๋™์‹œ์— ๋Œ์–ด์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋Š” ์‹ค์งˆ์  ๋ฐฉ๋ฒ•๋ก ์ด ๋  ๊ฒƒ์ด๋‹ค. ๋‚˜์•„๊ฐ€ ๋‹จ์ˆœ ๋ชจํ˜• ์ผ๋žŒํ‘œ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋Š” ํ˜„์žฌ ์ˆ˜์ค€์„ ๋„˜์–ด, Tํ˜•๋ณดโ‹…๋ณตํ•ฉ๋ณด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ€์žฌ ํ˜•์ƒ์„ ์ง€์›ํ•˜๊ณ  ๋ ˆ์ด์–ด ๊ตฌ๋ณ„ ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ ์ˆ˜์ค€๊นŒ์ง€ ํ™•๋Œ€ํ•  ๊ณ„ํš์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์„ค๊ณ„-์ œ์ž‘ ๋‹จ๊ณ„์—์„œ๋„ ์ฆ‰์‹œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ค€์„ ๊ณ ๋„ํ™”ํ•  ์˜ˆ์ •์ด๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹จ๋ฉด ์ •๋ณด๋‚˜ ํ…์ŠคํŠธ ์ง€์‹œ์–ด๋ฟ ์•„๋‹ˆ๋ผ ์œ„์„ฑ์‚ฌ์ง„๊ณผ ๊ฐ™์€ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ํ•˜์—ฌ ์™ธ๋ฒฝ์„  ์ถ”์ถœ๋ถ€ํ„ฐ ๊ตฌ์กฐ ๋ชจ๋ธ ์ƒ์„ฑ๊นŒ์ง€ ์ˆ˜ํ–‰ํ•˜๋Š” 3์ฐจ์› S-Prompt ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ฐœ๋ฐœํ•  ๊ณ„ํš์ด๋‹ค. Fig. 8์€ ์ œ์•ˆํ•˜๋Š” ์ฐจ์„ธ๋Œ€ ํ™•์žฅ ๊ฐœ๋…์„ ๋ณด์—ฌ์ฃผ๋Š” ์˜ˆ๋กœ์„œ, ๊ฑด๋ฌผ ์™ธ๊ณฝ ์‚ฌ์ง„์œผ๋กœ๋ถ€ํ„ฐ LLM์ด ๊ฑด๋ฌผ์˜ ๊ฐœ๋žต ์™ธํ˜•์„ ์„ ์ธ์‹โ‹…์ถ”์ถœํ•˜๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ ๊ตฌ์กฐ ํ”„๋ ˆ์ž„ ๋ชจ๋ธ๊ณผ ๋„๋ฉด์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์„ ๊ตฌ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๊ฑด๋ฌผ์˜ ๋ถ„์„โ‹…์„ค๊ณ„โ‹…๋ฌธ์„œํ™” ์ „ ๊ณผ์ •์„ LLM์„ ํ†ตํ•ด ์ž๋™ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜๋ฉฐ, ๊ตฌ์กฐ ์„ค๊ณ„ ์ž๋™ํ™”์™€ ๊ฑด์ถ•์ •๋ณด ์ถ”์ถœ์„ ๋™์‹œ์— ์‹คํ˜„ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ „์ฃผ๊ธฐ ์„ค๊ณ„ ํŒจ๋Ÿฌ๋‹ค์ž„์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค.

Fig. 8 Concept for future work: LLMโ€‘based extraction of building outlines from faรงade images followed by automatic generation of structural frames and drawings

../../Resources/ksm/jksmi.2025.29.4.60/fig8.png

๊ฐ์‚ฌ์˜ ๊ธ€

๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ ๋Œ€ํ•™์ค‘์ ์—ฐ๊ตฌ์†Œ์ง€์›์‚ฌ์—… โ€œICT ์œต๋ณตํ•ฉ ๊ธฐ์กด๊ฑด์ถ•๋ฌผ ๋‚ด์ง„๋ฆฌ๋ชจ๋ธ๋ง ์—ฐ๊ตฌ์†Œโ€ (RS-2018-NR031076) ๋ฐ ๊ตญํ† ๊ตํ†ต๋ถ€ ๋””์ง€ํ„ธ ๊ธฐ๋ฐ˜ ๊ฑด์ถ•์‹œ๊ณต ๋ฐ ์•ˆ์ „๊ฐ๋ฆฌ ๊ธฐ์ˆ ๊ฐœ๋ฐœ ์‚ฌ์—…์˜ ์—ฐ๊ตฌ๋น„์ง€์›(RS-2022-00143493)์˜ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

References

1 
Anthropic (2024), Claude 3.7 Sonnet Model Card, Anthropic, San Francisco.URL
2 
An, J.-H., and Lim, N.-G. (2018), A study on the application of BIM in reinforced concrete construction. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(1), 158โ€“166 (in Korean).DOI
3 
Chen, S., Feng, B., Li, J., and Xu, Y. (2024), OmniSVG: Large-Scale Image-to-Vector Generation with Omni-Modality, arXiv preprint arXiv:2402.12345.DOI
4 
Du, C., Esser, S., Nousias, S., and Borrmann, A. (2024), Text2BIM: Generating Building Models Using a Large Language Model-Based Multi-Agent Framework, arXiv preprint arXiv: 2408.08054.DOI
5 
Fahiem, M. A., and Farhan, M. S. (2007), Bidirectional SVGโ€“DXF translation for CAD data exchange. Computer-Aided Design and Applications, 4(1-4), 413-421.URL
6 
Guo, X., Wang, L., and Yuan, Q. (2025), VGBench: A Benchmark for Vector Graphic Understanding and Generation with Large Language Models, arXiv preprint arXiv:2502.01234.URL
7 
Hosseini, M., Tavakoli, A., and Kaur, S. (2025), Length Matters: Evaluating Context Utilization in Large Language Models, arXiv preprint arXiv:2504.04567.URL
8 
Kim, N., and Chin, S. (2019), Automatic extraction of rebar placement from structural drawings using computer vision techniques, Automation in Construction, 106, 102883.URL
9 
Kwon, H., Lee, S., and Kim, J. (2025), Prompt positioning matters: Improving engineering accuracy in large language models. In Proceedings of the IEEE Conference on AI Engineering 2025 (pp. 512-521). IEEE, New York.URL
10 
Lee, G., Jang, S., and Hyun, S. (2024), A Generalized LLM-Augmented BIM Framework: Application to a Speech-to- BIM System, arXiv preprint arXiv:2409.18345.DOI
11 
Liang, H., Kalaleh, M. T., and Mei, Q. (2025), Integrating Large Language Models for Automated Structural Analysis, arXiv preprint arXiv:2504.09754.DOI
12 
Liu, Y., Zhao, Z., and Zhang, P. (2024), Length Sensitivity in Transformer-Based Large Language Models, arXiv preprint arXiv:2405.01529.URL
13 
Madireddy, S., Gao, L., Din, Z. U., Kim, K., Senouci, A., Han, Z., and Zhang, Y. (2025), Large Language Model-Driven Code Compliance Checking in Building Information Modeling, Electronics, 14(11), 2146-2150.DOI
14 
Mouselinos, S., Kostas, D., and Li, R. (2024), Beyond Lines and Circles: Unveiling the Geometric Reasoning Gap in Large Language Models, arXiv preprint arXiv:2402.03877.DOI
15 
Mun, J.-H. (2024), Verification of reinforcement errors and proposal of a flexural ductility model for precast concrete shear walls using BIM. Journal of the Korea Institute for Structural Maintenance and Inspection, 28(3), 27-36. https://doi.org/10.11112/jksmi.2024.28.3.27 (in Korean).DOI
16 
OpenAI (2024), GPT-4o Technical Report, OpenAI, San Francisco.URL
17 
Qin, S., Guan, H., Liao, W., and Gu, Y. (2024), Intelligent Design and Optimization System for Shear Wall Structures Based on Large Language Models and Generative Artificial Intelligence, Journal of Building Engineering, 95, 109996.DOI
18 
Qiu, Y. (2021), Sketch2BIM: From Freehand Sketches to BIM Models via Deep Learning, Automation in Construction, 126, 103670.URL
19 
Quint, M. (2003), Scalable Vector Graphics (SVG) in Building Design: Web-Based Standards for CAD Interoperability, Proceedings of the 8th International Conference on Web3D Technology, ACM, New York, pp. 23-31.URL
20 
Tang, K., Wu, L., Han, T., and Chen, X. (2025), LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?, arXiv preprint arXiv:2503.19990.DOI
21 
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. (2022), Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, arXiv preprint arXiv:2201.11903.DOI
22 
Yang, B., Xie, T., Lin, B., and Deng, Y. (2023), ReAct: Synergizing Reasoning and Acting in Language Models, arXiv preprint arXiv:2210.03629.DOI
23 
Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., and Narasimhan, K. (2023), Tree of Thoughts: Deliberate Problem Solving with Large Language Models, arXiv preprint arXiv:2305.10601.DOI
24 
Zou, X., Li, Y., and Huang, J. (2024), VGBench: A Comprehensive Benchmark for Vector Graphics Understanding and Generation, arXiv preprint arXiv:2406.04222.URL