Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

  1. ์ •ํšŒ์›, ๋ช…์ง€๋Œ€ํ•™๊ต ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๊ณผ ์—ฐ๊ตฌ์›
  2. ์ •ํšŒ์›, ๋ช…์ง€๋Œ€ํ•™๊ต ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๊ณผ ๋ถ€๊ต์ˆ˜, ๊ต์‹ ์ €์ž



์œ ํ•œ ์š”์†Œ ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…, ๊ตฌ์กฐ ๊ฑด์ „์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™”, ๊ต๋Ÿ‰ ์œ ์ง€๋ณด์ˆ˜, ๋™ํŠน์„ฑ
Finite element model updating, Structural health monitoring, Genetic algorithm, Particle swarm optimization, Bridge maintenance, Dynamic properties

1. ์„œ ๋ก 

๋…ธํ›„ ์‹œ์„ค๋ฌผ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, ์ •๋ฐ€ ์ง„๋‹จ์„ ํ†ตํ•œ ์‹œ์„ค๋ฌผ ์ƒํƒœ ํ‰๊ฐ€ ๋ฐ ํšจ์œจ์  ์œ ์ง€๊ด€๋ฆฌ ์‹œ์Šคํ…œ ์ฒด๊ณ„ ๊ตฌ์ถ•์˜ ํ•„์š”์„ฑ์€ ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค (Lee et al., 2019). ๊ตญํ† ๊ตํ†ต๋ถ€์—์„œ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ 4์ฐจ ์‚ฐ์—… ๊ธฐ์ˆ  ๋ฐœ์ „์— ํž˜์ž…์–ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ธํ”„๋ผ ์‹œ์„ค๋ฌผ ๊ด€๋ฆฌ๋ฅผ ๊ณต๊ณ ํžˆ ํ•ด๋‚˜๊ฐ€๊ณ  ์žˆ์œผ๋ฉฐ, ์ธํ”„๋ผ ์‹œ์„ค๋ฌผ ๊ฐ€์šด๋ฐ ๊ฐ€์žฅ ๋งŽ์€ ๋น„์œจ์„ ์ฐจ์ง€ํ•˜๋Š” ๊ต๋Ÿ‰์— ๋Œ€ํ•˜์—ฌ ๊ตฌ์ฒด์ ์ธ ์š”์†Œ๋ณ„ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์ถ”์ง„ํ•˜๊ณ  ์žˆ๋‹ค (MOLIT, 2024). ์ด๋Ÿฌํ•œ ๊ต๋Ÿ‰ ์œ ์ง€๊ด€๋ฆฌ ์ •์ฑ…์€ ๊ตฌ์กฐ ๊ฑด์ „์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง(Structural Health Monitoring, SHM) ๊ธฐ์ˆ ๊ณผ ์—ฐ๊ณ„๋ฅผ ํ†ตํ•ด, ์‹ค์ธก ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒ์‹œ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ๊ตฌ์ถ• ๋ฐ ๋ณด๊ธ‰์„ ์ด‰์ง„ํ•˜๊ณ  ์žˆ๋‹ค. Ghorbani (2023)์€ SHM ์‹œ์Šคํ…œ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€ํ† ํ•˜๊ณ , ๊ตฌ์กฐ๋ฌผ ์•ˆ์ •์„ฑ ํ‰๊ฐ€ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•œ ๋‹จ๊ณ„๋ณ„ ๊ณผ์—…์„ ์„ธ๋ถ„ํ™”ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์„ผ์„œ ๊ธฐ์ˆ , ๋ฐ์ดํ„ฐ ํ•ด์„ ๊ธฐ๋ฒ•, ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ†ตํ•ฉ์„ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ๊ณ„์ธก ๊ธฐ๋ฐ˜ ์†์ƒ ํ‰๊ฐ€ ์ ˆ์ฐจ์˜ ์ •๋ฆฝ์ด SHM์˜ ์‹คํšจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ์ œ์‹œํ•˜์˜€๋‹ค.

์ตœ๊ทผ์—๋Š” ์‹ค์‹œ๊ฐ„ ๊ณ„์ธก ๊ธฐ์ˆ ๊ณผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์œตํ•ฉํ•œ ๊ตฌ์กฐ๋ฌผ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ์—ฐ๊ตฌ๋„ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. Danish (2020)์€ ๋ฌด์„  SHM ์„ผ์„œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ฒ ๊ทผ์ฝ˜ํฌ๋ฆฌํŠธ ๋ณด์˜ ์†์ƒ ๋‹จ๊ณ„๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ณ , ๋™์  ํŠน์„ฑ ๊ธฐ๋ฐ˜์˜ ์ƒํƒœ ํ‰๊ฐ€ ๊ธฐ๋ฒ•์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ตฌํ˜„ํ•จ์œผ๋กœ์จ ์‹ค์ธก ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒ์‹œ ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ Sharma (2022)์€ ๊ต๋Ÿ‰ ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•ด ๊ฐ€์†๋„ ๋ฐ ๋ณ€ํ˜•๋ฅ  ์‘๋‹ต์˜ ๋ฏผ๊ฐ๋„๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜๊ณ , ์†์ƒ ์œ„์น˜ ๋ฐ ์ •๋„์— ๋”ฐ๋ฅธ ์‘๋‹ต ํŠน์„ฑ์˜ ์ฐจ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. Razavi (2024)๋Š” ์‹œ์Šคํ…œ ์‹๋ณ„ ๊ธฐ๋ฒ•์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ณ ์œ ์ง„๋™์ˆ˜, ๊ฐ์‡ ๋น„, ๋ชจ๋“œํ˜•์ƒ ๋“ฑ์˜ ๋™ํŠน์„ฑ์„ ์ถ”์ถœํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์„ ๋น„๊ตโ‹…๋ถ„์„ํ•จ์œผ๋กœ์จ, ์†์ƒ์— ๋”ฐ๋ฅธ ์‹๋ณ„์˜ ์ •ํ™•๋„ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ ์‹ค์‹œ๊ฐ„ ๊ณ„์ธก ๊ธฐ์ˆ ๊ณผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ•ด์„ ๊ธฐ๋ฒ•์ด ์œตํ•ฉ๋œ ์ƒ์‹œ ๋ชจ๋‹ˆํ„ฐ๋ง ์ฒด๊ณ„๋Š” ๋…ธํ›„ ๊ต๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ฏธ๋ž˜์ง€ํ–ฅ์  ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค.

๊ฑฐ์‹œ์  SHM ๊ธฐ๋ฒ•์œผ๋กœ ๋ถ„๋ฅ˜๋˜๋Š” ์œ ํ•œ ์š”์†Œ (Finite Element, FE) ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์€ ์‹ค์ œ ๊ตฌ์กฐ๋ฌผ์˜ ์‘๋‹ต์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ฑฐ๋™ ํ˜„์ƒ์„ ๋ชจ์‚ฌํ•˜๋Š” ์ตœ์ ์˜ FE ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์—ฌ ๊ตฌ์กฐ๋ฌผ์˜ ๊ตฌ์กฐ์  ์•ˆ์ „์„ฑ ๊ฒ€ํ† ์™€ ํšจ์œจ์ ์ธ ์œ ์ง€๊ด€๋ฆฌ์— ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ๊ธฐ์ˆ ์ด๋‹ค (Kim et al., 2018). ์ด๋ฅผ ํ†ตํ•ด ๊ตฌ์กฐ ์š”์†Œ ์„ฑ๋Šฅ์˜ ์ ์ง„์  ๊ฐ์†Œ ๋˜๋Š” ๊ฒฐํ•จ์„ ์กฐ๊ธฐ์— ๋ฐœ๊ฒฌํ•จ์œผ๋กœ์จ ์œ ์ง€๋ณด์ˆ˜ ๋ฐ ์•ˆ์ „์„ฑ ํ‰๊ฐ€์˜ ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š”๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ FE ๋ชจ๋ธ์€ ์ •์  ์กฐ๊ฑด์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์ ํ™”๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์‹คํšจ์„ฑ ์žˆ๋Š” ์ ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ์ฃผ๊ธฐ์ ์ธ ์—…๋ฐ์ดํŠธ๋ฅผ ํ†ตํ•ด ์š”์†Œ๋ณ„ ์ƒํƒœ ๋ณ€ํ™”๋ฅผ ์ถ”์ ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค (Tran-Ngoc et al., 2018).

FE ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋Š” FE ๋ชจ๋ธ์„ ์ธก์ •๋œ ๋™์  ์‘๋‹ต๊ณผ ์ผ์น˜์‹œํ‚ด์œผ๋กœ์จ, ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ถ”์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค (Park et al., 2025). ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•œ ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋‹ค์ˆ˜์˜ ๋ฌผ์„ฑ์น˜๋ฅผ ์„ค๊ณ„ ๋ณ€์ˆ˜๋กœ ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋ณ€์ˆ˜์— ๋”ฐ๋ฅธ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๊ฐ€ ๋น„์„ ํ˜•์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ, ์ดˆ๊นƒ๊ฐ’ ์„ ์ •์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ํฌ๊ฒŒ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ตญ์†Œ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋งŒ์œผ๋กœ๋Š” ํšจ๊ณผ์ ์ธ ์—…๋ฐ์ดํŒ…์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์ „์—ญ ํƒ์ƒ‰ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋ชฉ์ ํ•จ์ˆ˜ ๊ธฐ๋ฐ˜์˜ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •ํ˜•ํ™”๋œ๋‹ค. ํŠนํžˆ, FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ๋ฌธ์ œ๋Š” ๋‹ค์ˆ˜์˜ Local minima๋ฅผ ๊ฐ€์ง€๋Š” Multi-modal ํŠน์„ฑ์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ ์—, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm, GA)์ด๋‚˜ ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™”(Particle Swarm Optimization, PSO)์™€ ๊ฐ™์€ ์ „์—ญ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค (Girardi et al., 2021). Liu (2016)์€ Canonica ๊ต๊ฐ์˜ ์ฝ˜ํฌ๋ฆฌํŠธ ํƒ„์„ฑ๊ณ„์ˆ˜์™€ ๋ถ€์žฌ ์—ฐ๊ฒฐ๋ถ€ ๊ฐ•์„ฑ ๋“ฑ์— ๋Œ€ํ•œ FE ๋ชจ๋ธ์„ GA๋ฅผ ํ†ตํ•ด ์—…๋ฐ์ดํŒ…ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ๊ณผ ์‹คํ—˜ ๋ฐ์ดํ„ฐ ๊ฐ„ ๋ถˆ์ผ์น˜๋ฅผ ์ตœ์†Œํ™”ํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด Multi-modal ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ GA์˜ ํšจ์œจ์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค. Tran-Ngoc (2018)์€ ์žฅ๊ฒฝ๊ฐ„ ๊ต๋Ÿ‰์ธ Nam O ๊ต๋Ÿ‰์„ ๋Œ€์ƒ์œผ๋กœ ํŠธ๋Ÿฌ์Šค ๋ถ€์žฌ์˜ ํƒ„์„ฑ๊ณ„์ˆ˜, ๊ต๋Ÿ‰ ๋ฐ›์นจ ๊ฐ•์„ฑ, ์ ‘ํ•ฉ๋ถ€ ํšŒ์ „ ๊ฐ•์„ฑ ๋“ฑ์„ ์—…๋ฐ์ดํŠธํ•˜๊ธฐ ์œ„ํ•ด PSO์™€ GA๋ฅผ ๋น„๊ต ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ PSO๊ฐ€ GA๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Hester (2019)๋Š” FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์˜ ์ฃผ์š” ์š”์†Œ๋กœ ๊ต๋Ÿ‰ ๋ฐ›์นจ์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰ ๋ฐ›์นจ์€ ๊ตฌ์กฐ๋ฌผ์˜ ํ•˜์ค‘์„ ์ง€์ง€ํ•˜๊ณ  ๋ถ„์‚ฐ์‹œํ‚ค๋Š” ํ•ต์‹ฌ ์š”์†Œ๋กœ์„œ, ๊ต๋Ÿ‰ ๋ฐ›์นจ์˜ ์ƒํƒœ๋Š” ๊ต๋Ÿ‰์˜ ๋™์  ํŠน์„ฑ ๋ฐ ์•ˆ์ •์„ฑ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค (Asad et al. 2023). ๋”ฐ๋ผ์„œ ๊ต๋Ÿ‰ ๋ฐ›์นจ ๊ตฌ์กฐ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๋ชจ๋ธ๋ง๊ณผ ์ฃผ๊ธฐ์  ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์€ ๊ตฌ์กฐ๋ฌผ ์œ ์ง€ ๊ด€๋ฆฌ๊ณ„ํš ์ˆ˜๋ฆฝ๊ณผ ์žฅ๊ธฐ์  ์•ˆ์ „์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•œ ํ•„์ˆ˜์  ๊ณผ์ •์ž„์„ ๊ฐ•์กฐํ•˜์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ๊ธฐ๋ฒ•์ด ๋†’์€ ์ˆ˜์ค€์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ •๋ฐ€๋„์™€ ์„ค๊ณ„ ๋ณ€์ˆ˜ ์ตœ์ ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค๋Š” ์ ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋‚˜, ๋Œ€๋ถ€๋ถ„ ์™ธ๋ถ€ ์กฐ๊ฑด์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑด์—์„œ ์‹คํ—˜์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค (Hester et al., 2019). ๊ณต์šฉ ์ค‘์ธ ๊ต๋Ÿ‰์—์„œ๋Š” ์™ธ๋ถ€ ํ•˜์ค‘์˜ ์ธ์œ„์  ํ†ต์ œ๊ฐ€ ์–ด๋ ต๊ณ , ๋ฏธ์ง€์˜ ์ž…๋ ฅ์— ๋Œ€ํ•œ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ๋งŒ ์ด์šฉํ•ด์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ์ œ์•ฝ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ œ์•ฝ์€ ํŠนํžˆ ์„ค๊ณ„ ๋ฐ ์‹œ๊ณต ๋„๋ฉด์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๋…ธํ›„ ๊ต๋Ÿ‰์—์„œ ๋”์šฑ ์‹ฌํ™”๋˜๋ฉฐ, FE ๋ชจ๋ธ ๊ตฌ์ถ•๊ณผ ์—…๋ฐ์ดํŠธ ๊ณผ์ •์— ์ถ”๊ฐ€์ ์ธ ๋ถˆํ™•์‹ค์„ฑ ์š”์ธ์ด ๋˜์–ด ๋ชจ๋ธ ์ •ํ•ฉ์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ์ดˆ๋ž˜ํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ œ3์ข… ์‹œ์„ค๋ฌผ๋กœ ์ง€์ •๋œ ๋•ํ‰ 1๊ต๋ฅผ ๋Œ€์ƒ์œผ๋กœ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰ ๋ฐ›์นจ๋ถ€์™€ ๊ฑฐ๋”์— ์„ค์น˜ํ•œ ๊ฐ€์†๋„๊ณ„๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ ์ˆ˜์ง ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ผ์ • ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„ํ• ํ•˜์˜€๋‹ค. ๊ฐ ๊ณ„์ธก ๋ฐ์ดํ„ฐ์…‹์— ์‹œ์Šคํ…œ ์‹๋ณ„ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๊ณ ์œ ์ง„๋™์ˆ˜, ๋ชจ๋“œํ˜•์ƒ ๋“ฑ์˜ ๋™ํŠน์„ฑ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ณ„์ธก ์‹œ์ ์˜ ๊ตฌ์กฐ ์ƒํƒœ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์—ฌ ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๊ฐ’์œผ๋กœ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. ์ถ”์ถœ๋œ ์‹œ๊ณ„์—ด ๋™ํŠน์„ฑ ์ด๋ ฅ์„ ํ™œ์šฉํ•˜์—ฌ, ์ดˆ๊ธฐ FE ๋ชจ๋ธ์˜ ์ •ํ•ฉ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , GA์™€ PSO๋ฅผ ํ™œ์šฉํ•ด ๊ต๋Ÿ‰ ๋ฐ›์นจ์˜ ๊ฐ•์„ฑ๊ณผ ๊ฑฐ๋”์˜ ์ˆ˜์ง ํƒ„์„ฑ๊ณ„์ˆ˜ ์ด๋ ฅ์„ ์—…๋ฐ์ดํŠธํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฌผ์„ฑ์น˜ ๋ณ€ํ™”๋ฅผ ์ถ”์ ํ•œ ํ›„, ๋‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ํŠนํžˆ, ๋Œ€์ƒ ๊ต๋Ÿ‰์€ ์ƒ์„ธ ์„ค๊ณ„ ๋„๋ฉด ๋ฐ ์‹œ๊ณต ๋„๋ฉด์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๋…ธํ›„ ๊ณต์šฉ ๊ต๋Ÿ‰์œผ๋กœ, ์œ ์ง€๊ด€๋ฆฌ๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋„๋ฉด์ด ๋ถ€์žฌํ•œ ๋…ธํ›„ ๊ต๋Ÿ‰์˜ ์œ ์ง€๊ด€๋ฆฌ ๋ฐ ์ƒํƒœ ํ‰๊ฐ€์—๋„ ํšจ์œจ์ ์œผ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ํ”„๋ ˆ์ž„์›Œํฌ๋กœ์„œ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ๋˜ํ•œ, ๊ต๋Ÿ‰ ๊ฑฐ๋”์™€ ๋ฐ›์นจ์˜ ํƒ„์„ฑ๊ณ„์ˆ˜์— ๋Œ€ํ•œ ์˜จ๋„์™€์˜ ์ƒ๊ด€์„ฑ์„ ๋ถ„์„ํ•˜์—ฌ, ์˜จ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ณด์ •์˜ ํ•„์š”์„ฑ์„ ์œ ์ง€๊ด€๋ฆฌ ๊ด€์ ์—์„œ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

2. ๋•ํ‰ 1๊ต ์ดˆ๊ธฐ FE ๋ชจ๋ธ ๊ตฌ์ถ•

1999๋…„์— ์ค€๊ณต๋œ ๋•ํ‰ 1๊ต๋Š” ๊ฒฝ๊ธฐ๋„ ์–‘ํ‰๊ตฐ์— ์œ„์น˜ํ•œ 2๊ฒฝ๊ฐ„ ๊ฐ•๋ฐ•์Šค ๊ฑฐ๋”๊ต๋กœ, 3๊ฐœ์˜ ๊ฑฐ๋”๋กœ Fig. 1๊ณผ ๊ฐ™์ด ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ƒ์‹œ ์‘๋‹ต์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ฑฐ๋” ํ•˜๋ถ€์— ๊ท ์ผํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ๊ฐ๊ฐ 5๊ฐœ์”ฉ, ์ด 15๊ฐœ์˜ ๊ฐ€์†๋„ ์„ผ์„œ๋ฅผ ์„ค์น˜ํ•˜๊ณ , 2020๋…„ 9์›” 17์ผ ์ž์ •๋ถ€ํ„ฐ 24์ผ ์ž์ •๊นŒ์ง€ 8์ผ๊ฐ„ 100 Hz์˜ ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๋กœ ์ƒ์‹œ ๊ฐ€์†๋„ ์‘๋‹ต์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ต๋Ÿ‰์˜ ์ƒ๋ถ€ 3๊ฐœ, ํ•˜๋ถ€ 9๊ฐœ์˜ ์˜จ๋„ ์„ผ์„œ๋ฅผ ์„ค์น˜ํ•˜์—ฌ, ํƒœ์–‘์— ์ง์ ‘ ๋…ธ์ถœ๋˜์–ด ์˜จ๋„ ๋ณ€ํ™”๊ฐ€ ๋น ๋ฅธ ์ƒ๋‹จ๊ณผ ์ด์— ๋น„ํ•ด ๋ณ€ํ™”๊ฐ€ ๋А๋ฆฐ ํ•˜๋‹จ์˜ ํŠน์„ฑ์„ ๋น„๊ต ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๊ฑฐ๋”์˜ ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋™ํŠน์„ฑ ์ •๋ณด๋ฅผ ์‹๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด, ๋งค 10๋ถ„ ๋‹จ์œ„ ๊ฐ„๊ฒฉ์œผ๋กœ ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์ด 1,152๊ฐœ์˜ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๋ชจ๋“œ ์‹๋ณ„ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๊ณ ์œ ์ง„๋™์ˆ˜์™€ ๋ชจ๋“œํ˜•์ƒ์„ ์ถ”์ถœํ•˜์˜€๋‹ค.

Fig. 1. Finite element model and location of sensors

../../Resources/ksm/jksmi.2025.29.6.21/fig1.png

2.1 ๊ณ„์ธก ์ •๋ณด๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋“œ ์‹๋ณ„

์ด ์—ฐ๊ตฌ์—์„œ๋Š” Numerical Algorithms for Subspace State Space System Identification(N4SID) ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋“œ ์‹๋ณ„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค (Overschee and Moor, 1994). ์ด ๊ธฐ๋ฒ•์€ ์„ โ‹…ํ›„ํ–‰ ์ž…์ถœ๋ ฅ ์‘๋‹ต์— ๋Œ€ํ•œ ํˆฌ์˜์„ ํ†ตํ•ด ์ „์ด ์ƒํƒœ ํ–‰๋ ฌ(Transition state matrix)์„ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ํŠนํžˆ, ์ž์—ฐ ์ง„๋™(Ambient vibration)ํ•˜์—์„œ๋Š” ์„ โ‹…ํ›„ํ–‰ ์ถœ๋ ฅ ์‘๋‹ต ๊ฐ„์˜ ํˆฌ์˜์„ ํ†ตํ•ด ์‹๋ณ„์ด ๊ฐ€๋Šฅํ•˜๋‹ค (Chang and Pakzad, 2014).

(1)
$\left\{\begin{aligned}x_{k+1}= Ax_{k}+Bu_{k}\\ y_{k}= Cx_{k}+Du_{t}\end{aligned}\right\}$

์‹ (1)์˜ $x_{k}$๋Š” ์ƒํƒœ ๋ฒกํ„ฐ, $y_{k}$๋Š” ์ถœ๋ ฅ ๋ฒกํ„ฐ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, $A$๋Š” ์ƒํƒœ ์ „์ด ํ–‰๋ ฌ๋กœ ๊ณ ์œ ์ง„๋™์ˆ˜์™€ ๊ฐ์‡ ๋น„ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ , $C$๋Š” ๋ชจ๋“œํ˜•์ƒ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ถœ๋ ฅ ํ–‰๋ ฌ์ด๋‹ค. ๋˜ํ•œ $B$๋Š” ์‹œ์Šคํ…œ์— ์ž‘์šฉํ•˜๋Š” ์ž…๋ ฅ $u_{k}$์— ๋Œ€ํ•œ ์ƒํƒœ ๋ฐ˜์‘์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ž…๋ ฅ ํ–‰๋ ฌ์ด๋ฉฐ, $D$๋Š” ์ž…๋ ฅ $u_{k}$๊ฐ€ ์ถœ๋ ฅ์— ์ง์ ‘ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ง์ ‘ ์ „๋‹ฌ ํ–‰๋ ฌ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ์ถœ๋ ฅ ์ „์šฉ ์‹œ์Šคํ…œ(Output-only)์—์„œ๋Š” ์ž…๋ ฅ์ด ์—†๋Š” ์ƒํƒœ์—์„œ ๊ตฌ์กฐ๋ฌผ์˜ ์ž์—ฐ ์ง„๋™ ์‘๋‹ต์œผ๋กœ๋ถ€ํ„ฐ ๋™ํŠน์„ฑ์„ ์‹๋ณ„ํ•œ๋‹ค.

(2)
$Y_{p}=\begin{bmatrix}y_{1}&y_{2}&\cdots &y_{j}\\y_{2}&y_{3}&\cdots &y_{j+1}\\\vdots &\vdots &\ddot{s}&\vdots \\y_{i}&y_{i+1}&\cdots &y_{i+j-1}\end{bmatrix},\: Y_{f}=\begin{bmatrix}y_{i+1}&y_{i+2}&\cdots \\\vdots &\vdots &\ddot{s}\end{bmatrix}$

์ด๋ฅผ ์œ„ํ•ด ๊ณ„์ธก๋œ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ„ ์ˆœ์„œ์— ๋”ฐ๋ผ ๊ณผ๊ฑฐ ์ถœ๋ ฅ $Y_{p}$์™€ ๋ฏธ๋ž˜ ์ถœ๋ ฅ $Y_{f}$๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์‹ (2)์™€ ๊ฐ™์€ ๋ธ”๋ก Hankel ํ–‰๋ ฌ(Hankel matrix)์„ ๊ตฌ์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ–‰๋ ฌ์€ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ„ ์‹œํ€€์Šค์— ๋”ฐ๋ผ ๋ฐฐ์—ดํ•จ์œผ๋กœ์จ ์‹ ํ˜ธ ๋‚ด ์ƒํƒœ ์ „์ด๋ฅผ ๋ณด๋‹ค ๋ช…ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๋ฉฐ, ์ƒํƒœ ๊ณต๊ฐ„ ์‹๋ณ„์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.

(3)
$H =Y_{f}\Pi_{Y_{p}}^{\bot}=Y_{f}- Y_{f}Y_{p}^{T}\left(Y_{f}Y_{p}^{T}\right)^{-1}Y_{p}$

์ดํ›„ ์‹ (3)๊ณผ ๊ฐ™์ด ๋ฏธ๋ž˜ ์ถœ๋ ฅ ํ–‰๋ ฌ $Y_{f}$ ๊ณผ๊ฑฐ ์ถœ๋ ฅ $Y_{p}$์— ์ง๊ต ํˆฌ์˜ํ•˜์—ฌ ํˆฌ์˜ ํ–‰๋ ฌ $H$๋ฅผ ์‚ฐ์ถœํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ฏธ๋ž˜ ์ถœ๋ ฅ์˜ ๋ณ€ํ™”๊ฐ€ ๊ณผ๊ฑฐ ์ถœ๋ ฅ์œผ๋กœ ์„ค๋ช…๋˜๋Š” ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ $\Pi_{Y_{p}}^{\bot}$๋Š” ๊ณผ๊ฑฐ ์ถœ๋ ฅ ํ–‰๋ ฌ์— ๋Œ€ํ•œ ์ง๊ต ๋ณด์ถฉ(Orthogonal complement) ํˆฌ์˜ ํ–‰๋ ฌ๋กœ, ๊ณผ๊ฑฐ ์ถœ๋ ฅ์— ํฌํ•จ๋˜์ง€ ์•Š๋Š” ์„ฑ๋ถ„์„ ์˜๋ฏธํ•œ๋‹ค. ์ฆ‰, ๋ฏธ๋ž˜ ์ถœ๋ ฅ์—์„œ ๊ณผ๊ฑฐ ์ถœ๋ ฅ์œผ๋กœ ์„ค๋ช…๋˜์ง€ ์•Š๋Š” ์ •๋ณด๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ์ฐจ์›๊ณผ ๋ชจ๋“œ ์ฐจ์ˆ˜(Model order)๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.

(4)
$H = U\Sigma V^{T}$

์ด ์ง๊ต ํˆฌ์˜ ํ–‰๋ ฌ์— ๋Œ€ํ•ด Singular Value Decomposition (SVD)์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์œ ํšจํ•œ ๋ชจ๋“œ ์ฐจ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. SVD๋Š” ํˆฌ์˜ ํ–‰๋ ฌ $H$๋ฅผ ์‹ (4)์™€ ๊ฐ™์ด ๋ถ„ํ•ดํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ $U$๋Š” ๊ด€์ธก์ž ํ–‰๋ ฌ(Extended observability matrix)์— ํ•ด๋‹นํ•˜๋ฉฐ, $\Sigma$๋Š” ๋ชจ๋“œ ์œ ํšจ์„ฑ์„ ํŒ๋‹จํ•˜๋Š” ํŠน์ด๊ฐ’ ํ–‰๋ ฌ, $V$๋Š” ์ƒํƒœ ํ–‰๋ ฌ ์‹๋ณ„์— ํ™œ์šฉ๋œ๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•ด N4SID๋Š” ์ž…๋ ฅ ์‹ ํ˜ธ๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ์กฐ๊ฑด์—์„œ๋„ ๊ตฌ์กฐ๋ฌผ์˜ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜, ๋ชจ๋“œํ˜•์ƒ๊ณผ ๊ฐ™์€ ๋™ํŠน์„ฑ ์ •๋ณด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์‹๋ณ„ํ•˜๊ฒŒ ๋œ๋‹ค.

์ฒซ ๋ฒˆ์งธ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด์„œ ์‹ ํ˜ธ ์ „์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜๋Š” 10 Hz๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๋Š” ๋ชจ๋“œ๋ฅผ ์ œ๊ฑฐํ•˜๊ณ , ์•ˆ์ •ํ™” ๋„ํ‘œ๋ฅผ ํ†ตํ•œ ๋ชจ๋“œ ์ถ”์ถœ์„ ์œ„ํ•ด ์‹๋ณ„๋œ ๋ชจ๋“œ์˜ ์ตœ๋Œ€ ๊ฐ์‡ ๋น„๋Š” 0.10์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ชจ๋“œํ˜•์ƒ์˜ ์œ ์‚ฌ์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” Modal Assurance Criteria(MAC)์™€ ์œ„์ƒ ์ผ๊ด€์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” Modal Phase Collinearity(MPC)๋Š” ๊ฐ๊ฐ 0.95์™€ 0.9๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ด๋“ค์€ ์•„๋ž˜์˜ ์‹๋“ค์„ ํ†ตํ•ด ๊ณ„์‚ฐ๋œ๋‹ค.

(5)
$MAC_{i,\: j}=\dfrac{\left |\phi_{i}^{T}\phi_{j}\right |^{2}}{\left |\phi_{i}^{T}\phi_{i}\right |\left |\phi_{j}^{T}\phi_{j}\right |}$

์‹ (5)์˜ MAC ์€ 1์— ๊ทผ์‚ฌํ• ์ˆ˜๋ก ๋ชจ๋“œํ˜•์ƒ $\phi_{i}$์™€ ๋ชจ๋“œํ˜•์ƒ $\phi_{j}$ ๊ฐ„์˜ ์ƒ๊ด€๋„๊ฐ€ ๋†’์€ ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ, 0์— ๊ทผ์‚ฌํ• ์ˆ˜๋ก ๋‘ ๋ชจ๋“œ ํ˜•์ƒ ๊ฐ„์˜ ๋…๋ฆฝ์„ฑ์ด ๋†’์€ ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.

(6)
$MPC =\dfrac{\left(\sum_{i=1}^{n}\left |\phi_{i}^{(MPC)}\right |\right)^{2}}{n\sum_{i=1}^{n}\left |\phi_{i}^{(MPC)}\right |^{2}}$

์‹ (6)์˜ $\phi_{i}^{(MPC)}$๋Š” $i$๋ฒˆ์งธ ์ž์œ ๋„์˜ ๋ณต์†Œ์ˆ˜ ๋ชจ๋“œ ์„ฑ๋ถ„์„ ์˜๋ฏธํ•˜๋ฉฐ, $n$์€ ๋ชจ๋“œํ˜•์ƒ์˜ ์ด ์ž์œ ๋„ ๊ฐœ์ˆ˜์ด๋‹ค. MPC๋Š” 1์— ๊ทผ์‚ฌํ• ์ˆ˜๋ก ์œ„์ƒ์ด ์™„์ „ํžˆ ์ •๋ ฌ๋œ ๋ชจ๋“œํ˜•์ƒ์„ ์˜๋ฏธํ•˜๋ฉฐ, 0์— ๊ทผ์‚ฌํ• ์ˆ˜๋ก ๋…ธ์ด์ฆˆ ๋˜๋Š” ๋ชจ๋“œ ๊ฐ„์˜ ํ˜ผํ•ฉ์ด ๋ฐœ์ƒํ•œ ๋ถˆ์™„์ „ํ•œ ๋ชจ๋“œํ˜•์ƒ์„ ์˜๋ฏธํ•œ๋‹ค.

N4SID๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋“œ ์‹๋ณ„์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ Fig. 2์˜ ์•ˆ์ •ํ™” ๋„ํ‘œ๊ฐ€ ๋„์ถœ๋˜์—ˆ๋‹ค. ๋ชจ๋ธ ์ฐจ์ˆ˜์— ๋”ฐ๋ผ ์‹๋ณ„๋œ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์„ค์ •๊ฐ’๋“ค์— ๋Œ€ํ•ด ์–ผ๋งˆ๋‚˜ ์•ˆ์ •์ ์œผ๋กœ ์ˆ˜๋ ดํ–ˆ๋Š”์ง€ ์‹œ๊ฐ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ๋ถ‰์€์ƒ‰์œผ๋กœ ํ‘œ์‹œํ•œ ์•ˆ์ •ํ™” ๋„ํ‘œ์˜ 4๊ฐœ์˜ ์ˆ˜๋ ด ๊ธฐ๋‘ฅ์œผ๋กœ๋ถ€ํ„ฐ 4๊ฐœ์˜ ์ฃผ์š” ๋ชจ๋“œ๊ฐ€ 10 Hz ์ด๋‚ด์˜ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ํ™œ์„ฑํ™”๋œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด ๊ณผ์ •์„ ํ†ตํ•ด ๋™ํŠน์„ฑ ์ •๋ณด๋ฅผ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค.

Fig. 2. Stability Diagram Using N4SID-OO Method

../../Resources/ksm/jksmi.2025.29.6.21/fig2.png

Fig. 3. mode shape of identified to N4SID-OO

../../Resources/ksm/jksmi.2025.29.6.21/fig3.png

2.2 ์ดˆ๊ธฐ FE ๋ชจ๋ธ ๊ตฌ์ถ•

๋Œ€์ƒ ๊ต๋Ÿ‰์˜ ์ดˆ๊ธฐ FE ๋ชจ๋ธ์€ Fig. 1๊ณผ ๊ฐ™์ด ์ƒ์šฉ ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์ธ Midas (Midas, 2018)๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋•ํ‰ 1๊ต๋Š” ์„ค๊ณ„ ๋ฐ ์‹œ๊ณต ๋„๋ฉด์ด ์กด์žฌํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ •๋ฐ€ํ•œ FE ๋ชจ๋ธ ๊ตฌํ˜„์ด ์ œํ•œ์ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ FE ๋ชจ๋ธ ๊ตฌํ˜„์—๋Š” Table 1์˜ ๊ต๋Ÿ‰์˜ ์™ธ๊ด€ ๊ณ„์ธก ์ •๋ณด์™€ ๊ต๋Ÿ‰์˜ ๊ธธ์ด, ํญ๊ณผ ๊ฐ™์€ ์ฃผ์š” ์ œ์›๊ณผ ์ž„์˜๋กœ ๊ฐ€์ •ํ•œ ์™ธ๋ถ€ ์š”์†Œ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ FE ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค.

9๊ฐœ์˜ ๊ฐ ์ง€์ ์€ ์ œ๋กœ ๊ธธ์ด ์š”์†Œ์˜ ์Šคํ”„๋ง์œผ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๊ฐ•์„ฑ ๊ฐ’๋งŒ์„ ๊ฐ€์ง€๋„๋ก ์„ค์ •ํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰ ๋ฐ›์นจ๊ณผ ๊ฑฐ๋” ์‚ฌ์ด์˜ ์ˆ˜์ง ๊ฐ•์„ฑ์€ 5.7ร—10โธ N/m๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰ ์ƒ๋ถ€ ์Šฌ๋ž˜๋ธŒ์˜ ์งˆ๋Ÿ‰์€ FE ๋ชจ๋ธ์— ๋ถ„ํฌํ•˜์ค‘ ํ˜•ํƒœ๋กœ ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰ ์ƒ๋ถ€ ์Šฌ๋ž˜๋ธŒ๋Š” ์ „์ฒด ๊ตฌ์กฐ๋ฌผ ์งˆ๋Ÿ‰ ์ค‘ ์ƒ๋‹นํ•œ ๋น„์ค‘์„ ์ฐจ์ง€ํ•˜๋ฏ€๋กœ ๋ชจ๋ธ ๋‚ด์—์„œ ๊ทธ ์˜ํ–ฅ์ด ์ถฉ๋ถ„ํžˆ ๊ณ ๋ ค๋˜๋„๋ก ํ•˜์˜€์œผ๋ฉฐ, ์‹ค์ œ ๋ชจ๋ธ๋ง ๊ณผ์ •์—์„œ๋Š” ์Šฌ๋ž˜๋ธŒ ์ž์ค‘์„ ์ ˆ์  ์ง‘์ค‘ ์งˆ๋Ÿ‰(Lumped mass)์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ „์ฒด ์‹œ์Šคํ…œ ์งˆ๋Ÿ‰ํ–‰๋ ฌ์— ํฌํ•จํ•˜์˜€๋‹ค. ๋•ํ‰ 1๊ต์˜ ์ฒซ ๋ฒˆ์งธ ์ˆ˜์ง ๊ฐ€์†๋„ ๊ณ„์ธก ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด ์‹๋ณ„๋œ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜์™€ FE ๋ชจ๋ธ์„ ํ†ตํ•ด ๊ณ„์‚ฐ๋œ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ๊ฐ ๋ชจ๋“œํ˜•์ƒ ๊ฐ„์˜ MAC value๋ฅผ Table 2์— ์ •๋ฆฌํ•˜์˜€๋‹ค.

์ˆ˜์ง ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์‹๋ณ„๋œ ๋™ํŠน์„ฑ ์ •๋ณด Fig. 3์™€ ์ œ์ž‘๋œ FE ๋ชจ๋ธ์˜ ๋™ํŠน์„ฑ ์ •๋ณด๊ฐ€ ๋†’์€ ์œ ์‚ฌ์„ฑ์„ ๊ฐ€์ง์— ๋”ฐ๋ผ ๊ตฌ์ถ•ํ•œ FE ๋ชจ๋ธ์ด ์ดˆ๊ธฐ FE ๋ชจ๋ธ๋กœ ์ ํ•ฉํ•จ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๋‘ ๋™ํŠน์„ฑ ์ •๋ณด์˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ณ , ์œ ์‚ฌํ•œ ๊ฑฐ๋™ ์ถ”์ •์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

Table 1. FE Model Specifications

Total Length 90m
Width 19.5m
Effective Width 14.5m
Height 10.7m
Number of Spans 2
Maximum Span Length 45m
Superstructure Type Steel box Girder Bridge
substructure Type Rigid Frame
Design Load DB-24
Traffic Volume 23,806
Year Completed 1999

Table 2. Comparison of experimentally identified natural frequencies with those predicted by the FE model and MAC value

Item 1 Mode 1 Mode 2 Mode 3 Mode 4
Identified Freq (Hz) 2.536 3.636 4.179 4.595
FE model Freq (Hz) 2.588 3.575 4.232 4.906
MAC 0.927 0.809 0.696 0.908

3. ์ „์—ญ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•œ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ

๊ต๋Ÿ‰์˜ ์ฃผ์š” ์ œ์›์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์€ ๊ฑฐ์˜ ์—†๋‹ค๊ณ  ํŒ๋‹จ๋˜๋ฏ€๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ•์„ฑ๊ณผ ๊ด€๋ จํ•œ ๋ฌผ์„ฑ์น˜๋ฅผ ์ค‘์‹ฌ์œผ๋กœ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋ถ€์žฌ(Main box girder)์™€ ํšก๋ฐฉํ–ฅ ๋ถ€์žฌ(Cross beam)์˜ ํƒ„์„ฑ๊ณ„์ˆ˜(E1, E2), ๊ต๋Ÿ‰ ๋ฐ›์นจ์˜ ์—ฐ์ง ๊ฐ•์„ฑ(K1โˆผK9)์˜ ์ด 11๊ฐœ์˜ ๋ฌผ์„ฑ์น˜์— ๋Œ€ํ•ด ์—…๋ฐ์ดํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์š”์†Œ์˜ ๊ฐ•์„ฑ์€ ๊ต๋Ÿ‰ ์ „์ฒด ๋™์  ๊ฑฐ๋™๊ณผ ๊ณ ์œ ์น˜์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์—, ์ „์—ญ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ GA์™€ PSO๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ๊ฐ ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค.

3.1 GA์™€ PSO ์•Œ๊ณ ๋ฆฌ์ฆ˜

FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ๊ณผ์ •์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ „์—ญ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ํƒ์ƒ‰ ๊ณต๊ฐ„ ๋‚ด์—์„œ ์ตœ์ ํ•ด๋ฅผ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ๋„๊ตฌ๋กœ, ๋‹ค์–‘ํ•œ ์„ค๊ณ„ ๋ณ€์ˆ˜์™€ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋™์‹œ์— ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค (Shabbir et al., 2011). ํŠนํžˆ, GA์™€ PSO๋Š” ์ดˆ๊นƒ๊ฐ’์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๊ฐ€ ๋‚ฎ๊ณ , ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์—์„œ๋„ ์šฐ์ˆ˜ํ•œ ์ „์—ญ ํƒ์ƒ‰ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์— ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค.

GA๋Š” ์ƒ๋ฌผํ•™์  ์ง„ํ™”์˜ ์›๋ฆฌ๋ฅผ ๋ชจ์‚ฌํ•˜์—ฌ ์ฃผ์–ด์ง„ ์ดˆ๊ธฐ ์กฐ๊ฑด ๋‚ด์—์„œ ๋‹ค์ˆ˜์˜ ๊ฐœ์ฒด๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๊ฐ ๊ฐœ์ฒด์˜ ์ ํ•ฉ๋„๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ํ‰๊ฐ€๋œ ์ ํ•ฉ๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์šฐ์ˆ˜ํ•œ ๊ฐœ์ฒด๋“ค์ด ๋ถ€๋ชจ ๊ฐœ์ฒด๋กœ ์„ ์ •๋˜๋ฉฐ, ์•„๋ž˜์˜ ์‹์„ ํ†ตํ•ด ์„ ํƒ ๊ณผ์ •์ด ์ด๋ฃจ์–ด์ง„๋‹ค.

(7)
$P_{select}=\dfrac{J\left(\theta_{i}\right)}{\sum_{j=1}^{N}J\left(\theta_{i}\right)}$

์‹ (7)์—์„œ $\theta_{i}$๋Š” $i$ ๋ฒˆ์งธ ๊ฐœ์ฒด์˜ ๋ณ€์ˆ˜๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, $J(\theta)$๋Š” ๊ฐœ์ฒด์˜ ๋™ํŠน์„ฑ๊ณผ ์ถ”์ •์น˜ ๊ฐ„์˜ ์˜ค์ฐจ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ ํ•ฉ๋„ ํ•จ์ˆ˜์ด๋‹ค. ์ ํ•ฉ๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ๋‹ค์Œ ์„ธ๋Œ€๋กœ ์„ ํƒ ํ™•๋ฅ ์ด ๋†’์•„์ง์„ ์˜๋ฏธํ•œ๋‹ค.

(8)
$Offspring_{1}=[\theta_{1}^{(1)},\: ...,\: \theta_{c}^{(1)} \vert \theta_{c+1}^{(2)},\: ...,\: \theta_{L}^{(2)}]$

์ดํ›„ ์‹ (8)์˜ ๊ต์ฐจ ๊ณผ์ •์—์„œ ์•ž์„œ ์„ ํƒ๋œ ๋†’์€ ์ ํ•ฉ๋„๋ฅผ ๊ฐ€์ง„ ๊ฐœ์ฒด์˜ ์ผ๋ถ€๊ฐ€ ๊ฒฐํ•ฉ๋˜์–ด ์ƒˆ๋กœ์šด ์ž์‹ ๊ฐœ์ฒด($Offspring_{1}$)๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

(9)
$\theta'=\theta +\sigma N(0,\: 1)$

์‹ (9)์˜ ๋Œ์—ฐ๋ณ€์ด ๊ณผ์ •์„ ํ†ตํ•ด ํ•ด์˜ ํƒ์ƒ‰ ์˜์—ญ์„ ๋‹ค์–‘ํ™”ํ•˜๊ณ , ์ง€์—ญ ์ตœ์ ์ ์— ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. ์ด๋กœ๋ถ€ํ„ฐ ์ƒˆ๋กญ๊ฒŒ ์ƒ์„ฑ๋œ ์ž์‹ ๊ฐœ์ฒด๋“ค์€ ๋‹ค์‹œ ์ ํ•ฉ๋„๋ฅผ ํ‰๊ฐ€๊ณผ์ •์„ ๊ฑฐ์น˜๋ฉฐ, ์ตœ์ ์˜ ๊ฒฐ๊ด๊ฐ’ ๋˜๋Š” ์ˆ˜๋ ด ๊ธฐ์ค€์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ์œ„ ๊ณผ์ •์„ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ํ•œ๋‹ค.

PSO๋Š” ๊ฐœ๋ณ„ ์ž…์ž๋“ค์ด ๊ตฐ์ง‘์„ ์ด๋ฃจ์–ด ์ตœ์ ํ•ด๋ฅผ ์ฐพ์•„๊ฐ€๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฒ•์œผ๋กœ, ์ž์—ฐ์—์„œ ๋ฌด๋ฆฌ๋ฅผ ์ง€์–ด ์›€์ง์ด๋Š” ์ƒ๋ช…์ฒด์˜ ํ–‰๋™์„ ๋ชจ๋ฐฉํ•œ ์ „์—ญ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. PSO๋Š” ์ดˆ๊ธฐ ์ž…์ž๋“ค์„ ๋ฌด์ž‘์œ„๋กœ ์ƒ์„ฑํ•œ ํ›„, ๊ฐ ์ž…์ž์˜ ์œ„์น˜ $\theta_{i}^{(t)}$์™€ ์†๋„ $v_{i}^{(t)}$๋ฅผ ์•„๋ž˜ ์‹์— ๋”ฐ๋ผ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ฐฑ์‹ ํ•˜๋ฉฐ ์ตœ์ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค.

(10)
$\begin{aligned} v_{i}^{(t+1)} = wv_{i}^{(t)} + c_{1}r_{1}(\theta^{p, best} - \theta_{i}^{(t)}) + c_{2}r_{2}(\theta^{g, best} - \theta_{i}^{(t)}) \theta_{i}^{(t+1)} = \theta_{i}^{(t)} + v_{i}^{(t+1)} \end{aligned}$

๊ฐ ์ž…์ž๋Š” ์ž์‹ ์˜ ๊ฒฝํ—˜ํ•œ ์ตœ์  ์œ„์น˜($\theta^{p, best}$)์™€ ๊ตฐ์ง‘ ์ „์ฒด์˜ ์ตœ์  ์œ„์น˜($\theta^{g, best}$)๋ฅผ ์ฐธ์กฐํ•˜์—ฌ, ์†๋„๋ฅผ ์กฐ์ •ํ•˜๊ณ  ์œ„์น˜๋ฅผ ๊ฐฑ์‹ ํ•œ๋‹ค. ์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜๋ฉด์„œ ์ž…์ž๋“ค์€ ์ ์ฐจ ์ตœ์ ํ•ด๋กœ ์ˆ˜๋ ดํ•˜๊ฒŒ ๋˜๋ฉฐ, ์„ค์ •๋œ ๋ฐ˜๋ณต ํšŸ์ˆ˜๋‚˜ ์ˆ˜๋ ด ๊ธฐ์ค€์ด ์ถฉ์กฑ๋˜๋ฉด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ข…๋ฃŒ๋œ๋‹ค.

3.2 GA์™€ PSO ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ ํ•ฉ๋„ ํ•จ์ˆ˜ ์„ค๊ณ„

์ ํ•ฉ๋„ ํ•จ์ˆ˜๋Š” GA์™€ PSO์— ๊ณตํ†ต์ ์œผ๋กœ ์ฃผํŒŒ์ˆ˜ ์˜ค์ฐจ์™€ ๋ชจ๋“œํ˜•์ƒ ๊ฐ„์˜ ์œ ์‚ฌ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€ํ‘œ์ธ MAC Value๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์•„๋ž˜ ์‹๊ณผ ๊ฐ™์ด ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

(11)
$J(\theta)=\alpha\sum_{a=1}^{r}\left(\dfrac{\hat{f_{a}}-f_{a}(\theta)}{\hat{f_{a}}}\right)^{2}+\beta\sum_{a=1}^{r}\left(1-MAC(\hat{\phi_{a}}^{T}\phi_{a}(\theta))\right)$

์‹ (11)์—์„œ, $((\hat{f_{a}}-f_{a}(\theta))/\hat{f_{a}})^{2}$๋Š” a๋ฒˆ์งธ ์‹ค์ธก๊ฐ’์œผ๋กœ๋ถ€ํ„ฐ ์‹๋ณ„๋œ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜์™€ ๋งค๊ฐœ๋ณ€์ˆ˜ $\theta$์— ์˜ํ•ด ๊ณ„์‚ฐ๋œ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜์˜ ์˜ค์ฐจ, $1-MAC(\hat{\phi_{a}}^{T}\phi_{a}(\theta))$๋Š” a๋ฒˆ์งธ ์‹ค์ธก ๊ณ ์œ ๋ฒกํ„ฐ์™€ ๋งค๊ฐœ๋ณ€์ˆ˜ $\theta$์— ์˜ํ•ด ๊ณ„์‚ฐ๋œ ๊ณ ์œ ๋ฒกํ„ฐ์˜ ๋ชจ๋“œ ์œ ์‚ฌ์„ฑ ์˜ค์ฐจ, $\alpha$๋Š” ๊ณ ์œ ์ฃผํŒŒ์ˆ˜์˜ ๊ฐ€์ค‘์น˜ ๊ณ„์ˆ˜, $\beta$๋Š” ๊ณ ์œ ๋ฒกํ„ฐ์˜ ๊ฐ€์ค‘์น˜ ๊ณ„์ˆ˜์ด๋‹ค.

๋˜ํ•œ, GA์™€ PSO์˜ ์ดˆ๊ธฐ ์ƒ์„ฑ ๊ฐœ์ฒด ์ˆ˜, ๋ฐ˜๋ณต ํšŸ์ˆ˜๋ฅผ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•˜์—ฌ ๋‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๋น„๊ต ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

4. FE ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ ๊ฒฐ๊ณผ

4.1 GA์™€ PSO ์ตœ์ ํ™” ์„ฑ๋Šฅ ๋น„๊ต

์ „์—ญ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ๊ต๋Ÿ‰์˜ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ์˜ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ์œ„ํ•ด์„œ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ดˆ๊ธฐ ์ƒ์„ฑ ๊ฐœ์ฒด ์ˆ˜์™€ ๋ฐ˜๋ณต์ˆ˜์— ๋Œ€ํ•œ ๊ฒฐ์ •์ด ํ•„์š”ํ•˜๋‹ค. GA์˜ ๊ฒฝ์šฐ Population์€ 100, Generation์€ 200์œผ๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, PSO์—์„œ ์œ ์‚ฌํ•œ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋Š” Particle๊ณผ Iteration์„ ๊ฐ๊ฐ 100๊ณผ 200์œผ๋กœ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์„ค์ •์€ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ ๊ฒฝํ—˜์„ ํ† ๋Œ€๋กœ, ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ณผ๋„ํ•˜์ง€ ์•Š์œผ๋ฉด์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค.

FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ์„ฑ๋Šฅ ํ‰๊ฐ€๋Š” ๊ฐ€์†๋„ ์„ผ์„œ๋กœ๋ถ€ํ„ฐ ๊ณ„์ธกํ•œ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์‹๋ณ„๋œ ๊ณ ์œ ์ง„๋™์ˆ˜์™€ ์—…๋ฐ์ดํŠธ๋œ FE ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ๊ฐœ์„ ๋œ ๊ณ ์œ ์ง„๋™์ˆ˜๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ชจ๋“œ ๊ฐ„์˜ ์˜ํ–ฅ๋ ฅ์„ ๊ท ๋“ฑํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ์ •๊ทœํ™”๋œ ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ(Normalized Root Mean Square Error(NRMSE)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์‹ค์ œ ๊ตฌ์กฐ์™€์˜ ๊ณต๊ฐ„์  ์ผ์น˜๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“œํ˜•์ƒ ๊ฐ„ ์œ ์‚ฌ๋„ ์ง€ํ‘œ์ธ MAC Value๋ฅผ ์ถ”๊ฐ€๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค.

์ •๋Ÿ‰ํ™”๋œ ์˜ค์ฐจ ๊ฒฐ๊ณผ๋Š” Table 3์— ์ •๋ฆฌํ•œ ๋ฐ”์™€ ๊ฐ™๋‹ค. GA์™€ PSO ๋ชจ๋‘ ๊ตฌ์กฐ์‹œ์Šคํ…œ์— ์žˆ์–ด ๋น„์ค‘์ด ํฐ 1, 2์ฐจ ๋ชจ๋“œ์˜ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜์™€ ๋ชจ๋“œํ˜•์ƒ์„ ๋†’์€ ์ •ํ™•๋„๋กœ ์ถ”์ •ํ•˜์˜€๊ณ , MAC Value ์—ญ์‹œ ์ „๋ฐ˜์ ์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์ˆ˜์ค€์„ ๋ณด์˜€๋‹ค. ๊ณ„์‚ฐ ์‹œ๊ฐ„์— ๋Œ€ํ•œ ๋ถ€๋ถ„์—์„œ๋Š” 1ํšŒ ํ‰๊ท  ์ˆ˜ํ–‰์‹œ๊ฐ„์ด GA๊ฐ€ ์•ฝ 18.57์ดˆ, PSO๋Š” ์•ฝ 25.75์ดˆ๋กœ GA๊ฐ€ PSO์— ๋น„ํ•ด ๋น ๋ฅธ ๊ณ„์‚ฐ ์†๋„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ฐ’์˜ ์ •ํ™•๋„์— ์žˆ์–ด์„œ ์ „์ฒด์ ์œผ๋กœ GA๋ณด๋‹ค PSO์˜ NRMSE ๊ฐ’์ด ๋‚ฎ๊ณ , MAC Value ๊ฐ’์€ ํฌ๊ฒŒ ๋„์ถœ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ณ„์‚ฐ ์‹œ๊ฐ„๋ณด๋‹ค๋Š” ๊ฒฐ๊ณผ์˜ ์ •ํ™•๋„ ์ธก๋ฉด์— ์ง‘์ค‘ํ•˜์—ฌ ๋•ํ‰ 1๊ต์˜ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์—์„œ GA๋ณด๋‹ค PSO์˜ ์„ฑ๋Šฅ์ด ๋” ์šฐ์ˆ˜ํ•˜๋‹ค๊ณ  ํŒ๋‹จํ•˜์˜€๊ณ , ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๋ถ„์„๋„ PSO๋กœ ๋„์ถœ๋œ ๊ฒฐ๊ณผ๋กœ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

Table 3. Frequency NRMSE and MAC values for GA&PSO -updated FE model

GA PSO
Freq NRMSE MAC Freq NRMSE MAC
Mode 1 0.78 0.952 0.72 0.969
Mode 2 1.30 0.835 1.28 0.872
Mode 3 1.52 0.782 1.47 0.802
Mode 4 0.98 0.916 0.94 0.925

1-4์ฐจ ๋ชจ๋“œ์˜ ์—…๋ฐ์ดํŒ… ๋œ ๊ณ ์œ ์ง„๋™์ˆ˜ ์ด๋ ฅ์€ GA๋ฅผ ์ ์šฉํ•œ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ๋Š” Fig. 4, PSO๋ฅผ ์ ์šฉํ•œ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ๋Š” Fig. 5์— ๋„์‹ํ•˜์˜€๋‹ค. ๊ฐ ์ด๋ ฅ ๊ณก์„ ์€ ๊ณ„์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹๋ณ„๋œ ๊ณ ์œ ์ง„๋™์ˆ˜(Identified)์™€ FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ์ˆ˜ํ–‰ ํ›„ ๊ณ„์‚ฐ๋œ ๊ณ ์œ ์ง„๋™์ˆ˜(Simulated)๋ฅผ ๋น„๊ตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์‘๋‹ต์— ๊ธฐ์—ฌ๋„๊ฐ€ ๋†’์€ ์ €์ฐจ ๋ชจ๋“œ์ธ 1, 2์ฐจ ๋ชจ๋“œ์—์„œ๋Š” ์ผ๋ณ„๋กœ ๊ณ ์œ ์ง„๋™์ˆ˜๊ฐ€ ์ƒํ•˜ ์ง„๋™ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ๋šœ๋ ทํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๊ณ ์ฐจ ๋ชจ๋“œ์ธ 3, 4์ฐจ ๋ชจ๋“œ์—์„œ๋Š” ๋ถˆ๊ทœ์น™ํ•œ ๋ณ€ํ™” ์–‘์ƒ์ด ๋‘๋“œ๋Ÿฌ์ง„๋‹ค. ์ „๋ฐ˜์ ์œผ๋กœ PSO๋ฅผ ํ™œ์šฉํ•œ ๊ฒฝ์šฐ, ๊ณ ์œ ์ง„๋™์ˆ˜์˜ ์ˆ˜๋ ด ๊ฒฝํ–ฅ ๋ฐ ๊ณ„์ธก๊ฐ’๊ณผ์˜ ์ผ์น˜๋„๊ฐ€ GA๋ณด๋‹ค ์šฐ์ˆ˜ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด๋Š” Table 3์— ์ œ์‹œ๋œ ์ •๋Ÿ‰์  ๋ถ„์„ ๊ฒฐ๊ณผ์™€๋„ ์ผ์น˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค.

Fig. 4. Comparison of identified frequency and simulated frequency from GA-updated FE model

../../Resources/ksm/jksmi.2025.29.6.21/fig4.png

Fig. 5. Comparison of identified frequency and simulated frequency from PSO-updated FE model

../../Resources/ksm/jksmi.2025.29.6.21/fig5.png

4.2 ์˜จ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ FE ๋ชจ๋ธ ๋ฌผ์„ฑ์น˜ ์ƒ๊ด€์„ฑ ๋ถ„์„

์ผ๋ณ„๋กœ ์ƒโ‹…ํ•˜ ์ง„๋™ํ•˜๋Š” ๊ณ ์œ ์ง„๋™์ˆ˜์˜ ๋ณ€ํ™”๋Š” FE ๋ชจ๋ธ์˜ ๋ฌผ์„ฑ์น˜ ๋ณ€ํ™”์™€ ์˜จ๋„ ๋ณ€ํ™” ๊ฐ„์— ๋ฐ€์ ‘ํ•œ ์—ฐ๊ด€์„ฑ์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์„ ํ†ตํ•ด ์ถ”์ •๋œ ๊ต๋Ÿ‰์˜ ๋ฌผ์„ฑ์น˜๊ฐ€ ์˜จ๋„์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์˜จ๋„ ๊ณ„์ธก์€ Fig. 1์— ๋‚˜ํƒ€๋‚œ ๋ฐ”์™€ ๊ฐ™์ด ๊ต๋Ÿ‰ ์ƒ๋ถ€ 3๊ฐœ์†Œ, ํ•˜๋ถ€ 9๊ฐœ์†Œ์—์„œ ๊ฐ€์†๋„ ๊ณ„์ธก๊ณผ ๋™์ผํ•œ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ˆ˜์ง‘๋˜์—ˆ๋‹ค. ์ด๋Š” ํƒœ์–‘์— ์ง์ ‘ ๋…ธ์ถœ๋˜์–ด ์˜จ๋„ ๋ณ€ํ™”๊ฐ€ ๋น ๋ฅธ ์ƒ๋ถ€์™€, ์ด์— ๋น„ํ•ด ๋ณ€ํ™”๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋”๋”˜ ํ•˜๋ถ€์˜ ํŠน์„ฑ์„ ๋น„๊ต ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค.

์ตœ์ ํ™” ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ƒโ‹…ํ•˜ํ•œ์„ ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆ˜๋ ด ์•ˆ์ •์„ฑ๊ณผ ๋ชจ๋ธ๋ง ๋ถˆํ™•์‹ค์„ฑ์„ ํฌ๊ด„ํ•  ์ˆ˜ ์žˆ๋„๋ก E1๊ณผ E2๋Š” 1.5ร—10ยนยน์—์„œ 2.8ร—10ยนยน Pa, ์Šคํ”„๋ง ๊ฐ•์„ฑ K์˜ ๊ฒฝ์šฐ 4ร—10โธ์—์„œ 7.5ร—10โธ N/m๋กœ ์„ค์ •ํ•˜์˜€๋‹ค.

์—…๋ฐ์ดํŒ… ๊ฒฐ๊ณผ๋กœ ๋„์ถœ๋œ E1๊ณผ E2๋Š” Fig. 6์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋“ฏ์ด ์ค‘์•™๊ฐ’์œผ๋กœ๋ถ€ํ„ฐ ๊ฐ๊ฐ ยฑ0.1 eยนยน Pa, ยฑ0.6 eยนยน Pa์˜ ๋ณ€๋™์„ ๋ณด์ด๋ฉฐ ๋„์ถœ๋˜์—ˆ๊ณ , ์ผ๊ด€์ ์ธ ๋ณ€ํ™” ์–‘์ƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์˜จ๋„์™€ ํƒ„์„ฑ๊ณ„์ˆ˜๊ฐ€ ๋ฐ˜๋น„๋ก€ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋ฏ€๋กœ, E1์€ ์ƒ๋ถ€ ํ‰๊ท  ์˜จ๋„(t_up_m)์™€, E2๋Š” ํ•˜๋ถ€ ํ‰๊ท  ์˜จ๋„(t_un_m)์™€ ์œ ์‚ฌํ•œ ๋ณ€ํ™” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ์ด๋Š” ์˜จ๋„ ๋ณ€ํ™”๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ถ€์žฌ ํ˜•์ƒ ๋ฐ ๊ตฌ์กฐ์  ํŠน์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ฆ‰, ํšก๋ฐฉํ–ฅ ๋ถ€์žฌ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋‘๊ป˜๊ฐ€ ์–‡์•„ ์™ธ๋ถ€ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋” ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๋ฐ˜๋ฉด, ์ฃผ๋ถ€์žฌ๋Š” ๋‹จ๋ฉด์ด ๋‘๊ป๊ณ  ๊ฐ•์„ฑ์ด ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๋Œ€์ ์œผ๋กœ ์˜จ๋„ ๋ณ€ํ™”์— ๋‘”๊ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ถ”์ •๋œ ๊ฒƒ์ด๋‹ค.

Fig. 6. Time histories of estimated elastic moduli and measured temperatures

../../Resources/ksm/jksmi.2025.29.6.21/fig6.png

FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์œผ๋กœ ์ถ”์ •ํ•œ ๊ต๋Ÿ‰ ๋ฐ›์นจ์˜ ์Šคํ”„๋ง ๊ฐ•์„ฑ์€ ๋…ธ๋“œ๋ณ„๋กœ ์ฐจ์ด๊ฐ€ ์žˆ์œผ๋‚˜, Fig. 7์— ๋„์‹ํ•œ K4 ์‚ฌ๋ก€์™€ ๊ฐ™์ด ์•ฝ 5ร—10โธ N/m์—์„œ 7.5ร—10โธ N/m ์‚ฌ์ด์—์„œ ๋ณ€๋™ํ•˜์˜€๋‹ค.

์ถ”์ •๋œ ๋ณ€์ˆ˜ ๊ฐ’๋“ค์€ ๊ฐ๊ฐ์˜ ์ƒโ‹…ํ•˜ํ•œ์— ๋„๋‹ฌํ•˜์ง€ ์•Š์•˜์œผ๋ฉฐ, ์ด๋Š” ํƒ์ƒ‰ ๊ฒฝ๊ณ„์— ์˜ํ•ด ํ•ด๊ฐ€ ์ธ์œ„์ ์œผ๋กœ ์ œํ•œ๋˜์ง€ ์•Š์•˜์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ์ถ”์ • ๋ฌผ์„ฑ์น˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์‚ฐ๋œ ๋™ํŠน์„ฑ ์ •๋ณด์˜ ์˜ค์ฐจ๊ฐ€ ์ž‘๊ฒŒ ๋„์ถœ๋จ์— ๋”ฐ๋ผ, ๋ฌผ์„ฑ์น˜๊ฐ€ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํƒ€๋‹นํ•œ ๋ฒ”์œ„ ๋‚ด์—์„œ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์ถ”์ •๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.

Fig. 7. Stiffness estimated through FE model updating

../../Resources/ksm/jksmi.2025.29.6.21/fig7.png

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์œผ๋กœ ๋„์ถœ๋œ ๊ต๋Ÿ‰์˜ ๋ฌผ์„ฑ์น˜์™€ ์˜จ๋„ ๊ฐ„์˜ ์ƒ๊ด€์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๊ฐ„ ์ง€์—ฐ(Lag time)์„ ๊ณ ๋ คํ•œ ์ƒ๊ด€ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ถ„์„์—๋Š” t_up_m, t_un_m, ์ƒโ‹…ํ•˜๋ถ€ ํ‰๊ท  ์˜จ๋„์˜ ์ฐจ(t_delta), E1, E2, ๊ทธ๋ฆฌ๊ณ  K1โˆผK9 ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋ณ€์ˆ˜๋ณ„ ์ตœ์  ์ง€์—ฐ์‹œ๊ฐ„์„ ์‚ฐ์ถœํ•˜๊ณ  ํ•ด๋‹น ์‹œ์ ์˜ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ Fig. 8์— ๋„์‹ํ•˜์˜€๋‹ค.

Fig. 8 (a)์— ๋‚˜ํƒ€๋‚œ ๋ฐ”์™€ ๊ฐ™์ด, ๋ฌผ์„ฑ์น˜์— ๋”ฐ๋ผ ์ตœ์  ์ง€์—ฐ์‹œ๊ฐ„์€ 10๋ถ„์—์„œ 160๋ถ„๊นŒ์ง€ ํญ๋„“๊ฒŒ ๋ถ„ํฌํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ฐ ๋ถ€์žฌ์˜ ์œ„์น˜์™€ ์—ด์ „๋‹ฌ ํŠน์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ƒโ‹…ํ•˜๋ถ€ ์˜จ๋„ ์ฐจ์ด์— ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. Fig. 8 (b)์— ๋”ฐ๋ฅด๋ฉด, ์˜จ๋„์™€ ๋ฐ›์นจ ๊ฐ•์„ฑ ๊ฐ„์˜ ์ตœ๋Œ€ ์ƒ๊ด€๊ณ„์ˆ˜๋Š” 0.3 ์ดํ•˜๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ, ์ƒ๋ถ€ ์˜จ๋„๋Š” E1, E2์™€์˜ ์ƒ๊ด€๊ณ„์ˆ˜๊ฐ€ ๊ฐ๊ฐ 0.20๊ณผ 0.17 ์ˆ˜์ค€์œผ๋กœ ๋‚ฎ๊ฒŒ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‚˜ํƒ€๋‚œ ๋‚ฎ์€ ์ƒ๊ด€๊ณ„์ˆ˜๋Š” ์˜จ๋„ ๋ณ€ํ™”์˜ ์ง์ ‘์  ์˜ํ–ฅ๋ณด๋‹ค๋Š” ๊ตํ†ตํ•˜์ค‘๊ณผ ํ™˜๊ฒฝ์  ์š”์ธ์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•œ ๊ฒฐ๊ณผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์ œ๋กœ Raja (2023)๋Š” ์žฅ๊ธฐ์ ์ธ ๊ตํ†ตํ•˜์ค‘๊ณผ ํ™˜๊ฒฝ ์š”์ธ์ด ๊ต๋Ÿ‰ ๋ฐ›์นจ์˜ ๋น„์„ ํ˜• ๊ฑฐ๋™ ๋ฐ ๊ฐ•์„ฑ ์ €ํ•˜๋ฅผ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ณด๊ณ ํ•œ ๋ฐ” ์žˆ๋‹ค.

๋ฐ˜๋ฉด, E1๊ณผ E2๋Š” t_un_m๊ณผ ๊ฐ๊ฐ 0.78๊ณผ 0.80, t_delta์— ๋Œ€ํ•ด์„œ๋Š” 0.8 ์ด์ƒ์˜ ๋†’์€ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ํ•˜๋ถ€ ์˜จ๋„ ๋ฐ ๋‹จ๋ฉด ๋‚ด ์˜จ๋„ ๊ตฌ๋ฐฐ๊ฐ€ ์ฃผ์š” ๊ตฌ์กฐ ๋ถ€์žฌ์˜ ์˜จ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ฌผ์„ฑ์น˜ ๋ณ€๋™ ๊ฒฝํ–ฅ์„ ์ž˜ ๋ฐ˜์˜ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š”, FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ๊ณผ์ •์—์„œ ์„ผ์„œ๋กœ ์ธก์ •๋œ ์˜จ๋„๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ถ€์žฌ ๊ฐ„ ์˜จ๋„ ๊ตฌ๋ฐฐ๋ฅผ ๋ถ€๊ฐ€ ๋ณ€์ˆ˜๋กœ ํ•จ๊ป˜ ๊ณ ๋ คํ•  ๊ฒฝ์šฐ, ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์ •๋ฐ€๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

Fig. 8. Time-Lagged Correlation between Temperature and Material Properties

../../Resources/ksm/jksmi.2025.29.6.21/fig8.png

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ3์ข… ์‹œ์„ค๋ฌผ์ธ ๋•ํ‰ 1๊ต๋ฅผ ๋Œ€์ƒ์œผ๋กœ, ๊ต๋Ÿ‰ ๋ฐ›์นจ๋ถ€์™€ ๊ฑฐ๋”์— ๋ถ€์ฐฉ๋œ ๊ฐ€์†๋„๊ณ„๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ์ˆ˜์ง ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋™ํŠน์„ฑ์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ FE ๋ชจ๋ธ์˜ ๊ฐ•์„ฑ ๊ด€๋ จ ๋ฌผ์„ฑ์น˜๋ฅผ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ…์—๋Š” ์ „์—ญ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ธ GA์™€ PSO๋ฅผ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋‘ ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, PSO๊ฐ€ GA์— ๋น„ํ•ด 1ํšŒ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ์•ฝ 7์ดˆ ์ •๋„ ๊ธธ์ง€๋งŒ ๋ชจ๋ธ๊ณผ ๊ณ„์ธก ๋ฐ์ดํ„ฐ ๊ฐ„ ์ •ํ•ฉ์„ฑ์ด ์šฐ์ˆ˜ํ•˜๊ฒŒ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ์—…๋ฐ์ดํŠธ๋œ FE ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, E1, E2์™€ K1โˆผK9์ด ์˜จ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ๋ณ€๋™ํ•˜๋Š”์ง€ ์ƒ๊ด€์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, E1, E2๋Š” t_un_m ๋ฐ t_delta์— ๋Œ€ํ•ด ์•ฝ 0.8 ์ˆ˜์ค€์˜ ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์—ฌ, ์˜จ๋„ ๋ณ€ํ™”๊ฐ€ ๊ตฌ์กฐ ์ „๋ฐ˜์˜ ๊ฑฐ๋™์— ์ง€๋ฐฐ์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นจ์„ ํ™•์ธํ•˜์˜€๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” GA ๋ฐ PSO์™€ ๊ฐ™์€ ์ „ํ†ต์  ์ „์—ญ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‹จ์ˆœํ•œ ํ•ด ํƒ์ƒ‰ ๋„๊ตฌ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ์ด๋ฅผ ์˜จ๋„ ์˜์กด์  ์‹œ๋ณ€(Time-variant) ๊ตฌ์กฐ ๊ฑฐ๋™ ๋ถ„์„๊ณผ ๊ฒฐํ•ฉํ•œ ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ์ฒด๊ณ„๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ํŠนํžˆ ๊ธฐ์กด์˜ ์„ผ์„œ ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ๋“ค์ด ๊ณ„์ธก๋œ ๋ฌผ๋ฆฌ๋Ÿ‰์„ ๋‹จ์ˆœ ๊ด€๋ฆฌ ๊ธฐ์ค€์œผ๋กœ ํ™œ์šฉํ•œ ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ„์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋“œ ์‹๋ณ„๊ณผ ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ์ ˆ์ฐจ๋ฅผ ํ†ตํ•ด ๋ฌผ๋ฆฌ์  ๋ฌผ์„ฑ์น˜๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ๊ณ„์ธก ์‹œ์ ์˜ ๊ตฌ์กฐ ์ƒํƒœ๋ฅผ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๊ฐ’์œผ๋กœ ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ์„ธ ์„ค๊ณ„ ๋„๋ฉด์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๊ณต์šฉ ๊ต๋Ÿ‰์„ ๋Œ€์ƒ์œผ๋กœ ์‹ค์ธก ์‘๋‹ต ๋ฐ์ดํ„ฐ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ๋ถ€์žฌ๋ณ„ ๋ฌผ์„ฑ์น˜๋ฅผ ์ถ”์ ํ•˜์˜€๋‹ค. ์ด๋Š” ๋„๋ฉด ์ •๋ณด ํ™•๋ณด๊ฐ€ ์–ด๋ ค์šด ๋…ธํ›„ ๊ต๋Ÿ‰์—์„œ๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ์ ˆ์ฐจ๋กœ์„œ, ์œ ์ง€๊ด€๋ฆฌ ๋ฐ ์ƒํƒœํ‰๊ฐ€์˜ ์‹ค์งˆ์  ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์‹ค์šฉ์  ๊ฐ€์น˜๊ฐ€ ํฌ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋” ๋งŽ์€ ์žฅ๊ธฐ ๊ณ„์ธก ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•˜๊ณ , ์˜จ๋„ ์™ธ์—๋„ ๊ตํ†ตํ•˜์ค‘, ํ’ํ•˜์ค‘, ์ผ์‚ฌ๋Ÿ‰ ๋“ฑ ๋ณตํ•ฉ ํ™˜๊ฒฝ์š”์†Œ๋ฅผ ์ถ”๊ฐ€ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์‹ ๋ขฐ๋„์™€ ์ •๋ฐ€๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ „์—ญ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ์˜จ๋„ ์˜์กด์  FE ๋ชจ๋ธ ์—…๋ฐ์ดํŒ… ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์‹ค์ธก ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ตฌ์กฐ๋ฌผ์˜ ์‹œ๋ณ€์  ๋ฌผ์„ฑ ๋ณ€ํ™”๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ , ์˜จ๋„ ์กฐ๊ฑด ํ•˜์—์„œ์˜ ๊ตฌ์กฐ ์‘๋‹ต ๋ฏผ๊ฐ๋„๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ–ฅํ›„ ์ž๋™ํ™” ๋ฐ ์ง€๋Šฅํ˜• ์œ ์ง€๊ด€๋ฆฌ ์‹œ์Šคํ…œ์œผ๋กœ์˜ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–์ถ”๊ณ  ์žˆ์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋ฌผ ๊ฑด์ „์„ฑ ํ‰๊ฐ€๊ธฐ์ˆ ์˜ ๊ณ ๋„ํ™” ๋ฐ ์‹ค์‹œ๊ฐ„ ์ƒํƒœ ์ถ”์ • ์ฒด๊ณ„ ๊ตฌ์ถ•์„ ์œ„ํ•œ ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ๋กœ์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค.

๊ฐ์‚ฌ์˜ ๊ธ€

์ด ๋…ผ๋ฌธ์€ ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ์˜ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋œ ์—ฐ๊ตฌ์ž„(No. RS-2025-00516404).

References

1 
Lee, H., Roh, H., Sun, J. W., Park, K. H. (2019), Analysis of appropriateness for maintenance of aged small bridges based on condition and load carrying capacity evaluation, Journal of the Korea Academia-Industrial Cooperation Society, 20(2), 59-66.Google Search
2 
(2024), Guidelines for the Safety and Maintenance of FacilitiesGoogle Search
3 
Ghorbani, S., Moustafa, M. A., Mosalam, K. M. (2023), A systematic review of structural health monitoring systems to strengthen post-earthquake assessment procedures, Structural Health Monitoring, 22(5), 3735-3761.Google Search
4 
Danish, M., Khan, M. A., Khushnood, R. A. (2020), Health assessment based on dynamic characteristics of reinforced concrete beam using real-time wireless structural health monitoring sensor, Journal of Structural Integrity and Maintenance, 5(3), 204-210.Google Search
5 
Sharma, P., Bhalla, S., Garg, S. (2022), Comparative study on sensitivity of acceleration and strain responses for bridge health monitoring, Journal of Structural Integrity and Maintenance, 7(4), 238-251.DOI
6 
Razavi, S. M. J., Enshaeian, A., Shoaei, M. (2024), Feature extraction based on dynamic response measurements for structural damage identification: A comparative study, Measurement, 222, 113157DOI
7 
Kim, S. H., Park, Y. S., Kim, N. G., Lee, J. J. (2018), Finite element model updating of simple beam considering boundary conditions, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(2), 76-82.Google Search
8 
Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L., Abdel Wahab, (2018), Model Updating for Nam O Bridge Using Particle Swarm Optimization Algorithm and Genetic Algorithm, Sensors, 18(12), 4131DOI
9 
Park, S., Chang, M., Yazdanpanah, O. (2025), A condition monitoring of steel box girder bridges based on consecutive system identification and model updating using a long-term monitoring database, Structures, 80, 109779DOI
10 
Girardi, M., Padovani, C., Pellegrini, D., Robol, L. (2021), A finite element model updating method based on global optimization, Mechanical Systems and Signal Processing, 152, 107372DOI
11 
Liu, T., Zhang, Q., Zordan, T., Briseghella, B. (2016), Finite Element Model Updating of Canonica Bridge Using Experimental Modal Data and Genetic Algorithm, Structural Engineering International(1/2016), 27-34.DOI
12 
Hester, D., Koo, K., Xu, Y., Brownjohn, J., Bocian, M. (2019), Boundary condition focused finite element model updating for bridges, Engineering Structures, 198, 109514DOI
13 
Asad, A. T., Kim, B., Cho, S., Sim, S. H. (2023), Prediction model for long-term bridge bearing displacement using artificial neural network and Bayesian optimization, Structural Control and Health Monitoring, 2023DOI
14 
Van Overschee, P., De Moor, B. (1994), N4SID: Subspace algorithms for the identification of combined deterministic- stochastic systems, Automatica, 30(1), 75-93.DOI
15 
Chang, M., Pakzad, S. N. (2014), Observer Kalman filter identification for output-only systems using interactive structural modal identification toolsuite, Journal of Bridge Engineering, 19(8), 1943-5592.DOI
16 
Shabbir, F., Omenzetter, P. (2011), Comparison of different global optimization algorithms for model updating with application to a full-scale bridge structure, Proceedings of the Ninth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Society, Paper No. 215Google Search
17 
Raja, B. N. K. (2023), A Simplified Methodology for Condition Assessment of Bridge Bearings Using Vibration-Based Structural Health Monitoring Techniques, Structural Monitoring and Maintenance, 10(2)DOI
18 
(2018), Civil On-line Manual- Civil structure design systemGoogle Search