Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

REFERENCES

1 
(2010), Specification for structural steel buildings
2 
(2009), Korean Building Code, 421-645.
3 
(1976), Concrete filled steel tubular columns, Research Rep No R 283, 00
4 
(2012), Experimental tests on eccentrically loaded high-strength hybrid concrete-filled steel tube columns, Proceedings of Korean Concrete Institute, 639-640.
5 
(1989), Shear Design for High Strength Concrete, CEB Bulletin d’Information, No. 193, 77-83.
6 
(2006), Behaviour of normal and high strength concrete-filled compact steel tubecircular stub columns, Journal of Constructional Steel Research, 62(7), 706-715.
7 
(1995), Test results of eccentrically loaded short columns-square CFT columns, Proceedings of the second joint technical coordinating committee meeting on composite and hybrid structures
8 
(1988), Strength of steel-encased concrete beam columns, J. Struct. Div. ASCE, 93(5), 113-124.
9 
(1993), Composite columns of hollow sectionsfilled with high strength concrete, Research report. Chalmers University of Technology Goteborg, 00
10 
(1989), Experimental behaviour of concrete filled rolled rectangular hollow-section columns, Structural Engineer, 67(19), 346-353.
11 
(1990), Further tests on concrete-filled rectangular hollow-section columns, Structural Engineer, 68(20), 405-413.
12 
(2000), Influence of Concrete Compaction on the Strength of Concrete-filled Steel RHS Columns, Journal of Constructional Steel Research, 59(6), 751-767.
13 
(2010), Karrlson & Sorensen, Inc., ABAQUS Theory Manual
14 
(2011), An experimental study on the behavior of square concrete-filled high strength steel tube columns, Journal of iron and steel research international, 18, 1-2.
15 
(2001), Strength of Axially Loaded Concrete filled Tubular Stub Column, International Journal of Steel Structures, 13(3), 279-287.
16 
(2001), An Experimental Study on the CFT Stub Columns Filled With High Strength Concrete, Journal of Architectural Institute of Korea, 17(4), 29-36.
17 
(1969), Strength of concrete-filled steel columns, J. Struct. Div. ASCE, 95(2), 2265-2587.
18 
(2012), Concrete Design Requirements, 75-77.
19 
(2010), STANDARD TEST METHOD FOR COMPRESSIVE STRENGTH OF CONCRETE, 1-16.
20 
(2012), Compressive Strength and Residual Stress Evaluation of Stub Columns Fabricated of High Strength Steel, Korean Society of Steel Construction, 24(1), 23-34.
21 
(1998), A Plastic-Damge Concrete Model for Earthquake Analysis of Dams, Earthquake Engineering and Structural Dynamic, 27(9), 937-956.
22 
(2008), The Specified Minimum Yield Stress of SM570TMC in CFT Composite Columns, Journal of Korean Society of Steel Construction, 20(1), 205-213.
23 
(1997), AIJ Design Method for Concrete Filled Steel Tubular Structure, ASCCS Seminar, 00
24 
(1991), Nonlinear analysis and constitutive models of reinforced concrete, 1-182.
25 
(1998), Axially Loaded Concrete-filled Steel Tubes, Journal of Structural Engineering ASCE, 124(10), 1125-1138.
26 
(2002), An Experimental Study on Strength of Slender Square Tube Columns Filled with High Strength Concrete, International Journal of Steel Structures, 14(4), 471-479.
27 
(2000), A Study on the Axial Compression Behavior of Rectangular Steel Tubular Stub Columns Infilled with High Strength Concrete, Journal of Architectural Institute of Korea, 16(2), 75-82.
28 
(1997), Structural Behavior of Concrete-filled Steel Box Sections, IABSE reports Innsbruck Austria September 16-18, 765-800.
29 
(2001), Strength of Short Concrete-filled High Strength Steel Box Columns, Journal of Constructional Steel Research, 57(2), 113-134.
30 
(2002), Strength of Slender Concrete-filled Steel Box Columns Incorporating Local Buckling, Journal of Constructional Steel Research, 58(2), 341-352.
31 
(2001), Structural Behavior of High Strength Concrete Filled Steel Tubular Columns, Journal of the Architectural Institute of Korea, 17(1), 67-74.