Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)
1. 
Kimura, H., Ishikawa, Y., Kambayashi, A., Takatsu, H. (2007), Seismic behavior of 200 MPa ultra-high-strength steel-fiber reinforced concrete columns under varying axial load. Journal of advanced concrete technology , 5 (2), 193-200.DOI
2. 
Kalifa, P., Menneteau, F. D., Quenard, D. (2000), Spalling and pore pressure in HPC at high temperatures. Cement and concrete research , 30 (12), 1915-1927.DOI
3. 
Kodur, V. K. R. (2000), Spalling in high strength concrete exposed to fire: concerns, causes, critical parameters and cures. In Advanced Technology in Structural Engineering (pp. 1-9).DOI
4. 
Choe, G., Kim, G., Gucunski, N., Lee, S. (2015), Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Construction and Building Materials, 86, 159-168.DOI
5. 
Zeiml, M., Leithner, D., Lackner, R., Mang, H. A. (2006), How do polypropylene fibers improve the spalling behavior of in-situ concrete?. Cement and concrete research, 36(5), 929-942.DOI
6. 
Dancygier, Avraham N, Katz, Amnon, Benamou, David, Yankelevsky, David Z., Resistance of double-layer reinforced HPC barriers to projectile impact. Int J Impact Eng 2014;67:39–51DOI
7. 
Kanda, T., Li, Victor C., Interface property and apparent strength of high strength hydrophilic fiber in cement matrix. J Mater Civ Eng 1998;10:5–13.DOI
8. 
Bolat, H, Simsek, O, Çullu, M, Durmus, G, Can, Ö., The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Compos Part B: Eng 2014;61:191–8.DOI
9. 
Bencardino, F, Rizzuti, L, Spadea, G, Swamy, R.N., Implications of test methodology on post-cracking and fracture behaviour of steel fibre reinforced concrete. Compos Part B: Eng 2013;46:31–8.DOI
10. 
Peng, G. F., Yang, W. W., Zhao, J., Liu, Y. F., Bian, S. H., Zhao, L. H. (2006), Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures. Cement and Concrete Research, 36(4), 723-727.DOI
11. 
Ding, Y., Zhang, C., Cao, M., Zhang, Y., Azevedo, C. (2016), Influence of different fibers on the change of pore pressure of self-consolidating concrete exposed to fire. Construction and Building Materials, 113, 456-469.DOI
12. 
Choi, S. J., Hong, B. T., Lee, S. J., Won, J. P. (2014), Shrinkage and corrosion resistance of amorphous metallic-fiber-reinforced cement composites. Composite Structures, 107, 537-543.DOI
13. 
Yang, J. M., Shin, H. O., Yoo, D. Y. (2017), Benefits of using amorphous metallic fibers in concrete pavement for long-term performance. Archives of Civil and Mechanical Engineering, 17(4), 750-760.DOI
14. 
Yoo, D. Y., Banthia, N., Yang, J. M., Yoon, Y. S. (2016), Size effect in normal-and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials, 121, 676-685.DOI
15. 
Choe, G., Kim, G., Yoon, M., Hwang, E., Nam, J., Guncunski, N. (2019), Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type. Cement and Concrete Research, 116, 1-10.DOI
16. 
Gao, J., Sun, W., Morino, K. (1997), Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cement and Concrete Composites, 19(4), 307-313.DOI
17. 
Bangi, M.R., Horiguchi, T., Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high-strength concrete at elevated temperatures, Cem. Concr. Res. 42(2) (2012) 459–466DOI