JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2019-12
(Vol.23 No.7)
10.11112/jksmi.2019.23.7.80
Journal XML
XML
PDF
INFO
REF
References
1
G. Zaccone, R. Karim, A. Menshawy, 2017, Deep Learning with Tensorflow, Acorn Seoul, pp. 33-35
2
S. Choi, M. Do, 2018, Prediction of Asphalt Pavement Service Life using Deep Learning, Journal of Highway Engineering, KSRE, Vol. 20, No. 2, pp. 57-65
3
H. Jung, W. Nam, G. Kim, D. Kim, I. Kang, H. Kim, 2018, Deep Learning-based Damage Detection Method for Bridge Condition Evaluation, Magazine of the Korea Institute For Structural Maintenance and Inspection, KSMI, Vol. 22, No. 3, pp. 16-22
4
G. Lee, 2018, Damage Detection for RC Rahmen Bridge Based on Convolutional Neural Network, Inha University, Incheon, pp. 22-25
5
R. Girshick, J. Donahue, T. Darrell, J. Malik, 2016, Region-based Convolutional Networks for Accurate Object Detection and Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, Vol. 38, No. 1, pp. 142-158
6
B. Lee, 2017, R-CNNs Tutorial, (https://blog.lunit.io/2017/06/ 01/r-cnns-tutorial)
7
S. Ren, K. He, R. Girshick, J. Sun, 2017, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, Vol. 39, No. 6, pp. 1137-1149
8
B. Lee, 2016, Gas Turbine for Aircraft, Kyungmoon, Seoul, pp. 147-149
9
H. An, J. Jang, J.H. Lee, S. Shin, 2019, Damage Detection Method of Blade Systems using Deep Learning Technique, Proceedings of the Korea Institute For Structural Maintenance and Inspection, KSMI, Vol. 23, No. 1, pp. 30-31
10
M. Alasdair, 2007, Introduction to Digital Image Processing with Matlab, Cengage Learning, Seoul, pp. 112-122
11
J. Sin, S. Jang, I. Ji, 2008, Introduction to Digital Image Processing, HANBIT Media, Seoul, pp. 183-187
12
T. Kim, 2017, Data Augmentation for Convolutional Neural Network, (https://tykimos.github.io/2017/06/10/CNN_Data_Aug mentation)
13
E. Nakai, 2016, Deep Learning Getting Started with TensorFlow, Jpub, Paju, pp. 65-68
14
D. Cho, 2017, Performance Evaluation of Classification Model, (https://bcho.tistory.com/1206)
15
J. Cho, 2018, Performance Measurement of Multiple Classification Models – Performance Measure (ACU, F1 score), (https://nittaku. tistory.com/295)
16
Y. An, K. and Jang, 2017, Deep Learning-Based Structural Crack Evaluation Technique Through UAV-Mounted Hybrid Image Scanning, Journal of the Korean association for shell and spatial structures, KASS, Vol. 17, No. 4, pp. 20-26