JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2022-10
(Vol.26 No.5)
10.11112/jksmi.2022.26.5.30
Journal XML
XML
PDF
INFO
REF
References
1
Han, S. M., Lee, D. H., Lee, S. H. (2021), Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling, Journal of The Korean Geotechnical Society, 37(9), 37-50.
2
Yoon, T. G., Lee, S. (2008), A Study for Tunnel Management System Development Using a Tunnel Scanner, Journal of Korea Sturctural Maintenance and Inspection, 12(3), 183-190.
3
Lee, D. H., Kim, J. W., Jun, T. H., Jeong, W. S., Park, K. T. (2016), Development of Performance Prediction Method for Bridge and Tunnel Management Decision-making, Journal of Korea Sturctural Maintenance and Inspection, 20(1), 33-40.
4
Lee, J. W., Lee, S. W. (2018), A Monitoring System of Tunnel Risk Factors based on Collapse and Fire Detection Sensors, Korea Software Congress 2018, 498-500.
5
Kim, S. J., Lee, S. W., Seo, D. M. (2019), A Comparative Analysis of Image Feature Extraction Algorithm for Generation of Panorama Images in Tunnel, Korea Computer Congress 2019, 1409-1411.
6
Kim, I. S., Lee, C. H. (2018), Development of Video Shooting System and Technique Enabling Detection of Micro Cracks in the Tunnel Lining while Driving, Journal of Korean Society of Hazard, 18(5), 217-229.
7
Kim, B. H., Cho, S. J., Chae, H. J., Kim, H. K., Kang, J. H. (2021), Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning, Journal of Korea Sturctural Maintenance and Inspection, 25(4), 65-77.
8
Li, D., Xie, Q., Gong, X., Yu, Z., Xu, J., Sun, Y., Wang, J. (2021), Automatic defect detection of metro tunnel surfaces using a vision-based inspection system, Advanced Engineering Informatics, 47, 101206
9
Lowe, D. G. (2004), Distinctive image features from scale-invariant keypoints, International journal of computer vision, 60(2), 91-110.
10
Rublee, E., Rabaud, V., Konolige, K., Bradski, G. (2011, November), ORB: An efficient alternative to SIFT or SURF, In 2011 International conference on computer vision, Ieee, 2564-2571.
11
Leutenegger, S., Chli, M., Siegwart, R. Y. (2011, November), BRISK: Binary robust invariant scalable keypoints, In 2011 International conference on computer vision, Ieee, 2548-2555.
12
Park, S., Park, J. T., Jee, K. H., Hong, S. J. (2021), Detecting Accuracy on Crack Damages of Large-Scale Facilities using an Image-based Scanning System, Journal of Korean Society for Advanced Composite Structures, 12(6), 46-52.
13
Ahn, H., Rhee, S. B. (2012), Fast Image Stitching Based on Improved SURF AlgorithmUsing Meaningful Features, The KIPS Transactions: Part B, 19-B(5), 93-98.
14
Wei, L. I. U., Wenjie, Z. H. A. O., Cheng, L. I., Zhonglin, X. U., Kaiqiao, T. I. A. N. (2015), Detecting small moving target based on the improved ORB feature matching, Opto-Electronic Engineering, 42(10), 13
15
Tareen, S. A. K., Saleem, Z. (2018, March), A comparative analysis of sift, surf, kaze, akaze, orb, and brisk, In 2018 International conference on computing mathematics and engineering technologies (iCoMET), Ieee, 1-10.
16
Hong, S., Shin, H. S. (2020), Comparative Performance Analysis of Feature Detection and Matching Methods for Lunar Terrain Images, KSCE Journal of Civil and Environmental Engineering Research, 40(4), 437-444.