Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Han, S. M., Lee, D. H., Lee, S. H. (2021), Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling, Journal of The Korean Geotechnical Society, 37(9), 37-50.DOI
2 
Yoon, T. G., Lee, S. (2008), A Study for Tunnel Management System Development Using a Tunnel Scanner, Journal of Korea Sturctural Maintenance and Inspection, 12(3), 183-190.URL
3 
Lee, D. H., Kim, J. W., Jun, T. H., Jeong, W. S., Park, K. T. (2016), Development of Performance Prediction Method for Bridge and Tunnel Management Decision-making, Journal of Korea Sturctural Maintenance and Inspection, 20(1), 33-40.DOI
4 
Lee, J. W., Lee, S. W. (2018), A Monitoring System of Tunnel Risk Factors based on Collapse and Fire Detection Sensors, Korea Software Congress 2018, 498-500.Google Search
5 
Kim, S. J., Lee, S. W., Seo, D. M. (2019), A Comparative Analysis of Image Feature Extraction Algorithm for Generation of Panorama Images in Tunnel, Korea Computer Congress 2019, 1409-1411.Google Search
6 
Kim, I. S., Lee, C. H. (2018), Development of Video Shooting System and Technique Enabling Detection of Micro Cracks in the Tunnel Lining while Driving, Journal of Korean Society of Hazard, 18(5), 217-229.DOI
7 
Kim, B. H., Cho, S. J., Chae, H. J., Kim, H. K., Kang, J. H. (2021), Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning, Journal of Korea Sturctural Maintenance and Inspection, 25(4), 65-77.DOI
8 
Li, D., Xie, Q., Gong, X., Yu, Z., Xu, J., Sun, Y., Wang, J. (2021), Automatic defect detection of metro tunnel surfaces using a vision-based inspection system, Advanced Engineering Informatics, 47, 101206DOI
9 
Lowe, D. G. (2004), Distinctive image features from scale-invariant keypoints, International journal of computer vision, 60(2), 91-110.DOI
10 
Rublee, E., Rabaud, V., Konolige, K., Bradski, G. (2011, November), ORB: An efficient alternative to SIFT or SURF, In 2011 International conference on computer vision, Ieee, 2564-2571.DOI
11 
Leutenegger, S., Chli, M., Siegwart, R. Y. (2011, November), BRISK: Binary robust invariant scalable keypoints, In 2011 International conference on computer vision, Ieee, 2548-2555.DOI
12 
Park, S., Park, J. T., Jee, K. H., Hong, S. J. (2021), Detecting Accuracy on Crack Damages of Large-Scale Facilities using an Image-based Scanning System, Journal of Korean Society for Advanced Composite Structures, 12(6), 46-52.Google Search
13 
Ahn, H., Rhee, S. B. (2012), Fast Image Stitching Based on Improved SURF AlgorithmUsing Meaningful Features, The KIPS Transactions: Part B, 19-B(5), 93-98.DOI
14 
Wei, L. I. U., Wenjie, Z. H. A. O., Cheng, L. I., Zhonglin, X. U., Kaiqiao, T. I. A. N. (2015), Detecting small moving target based on the improved ORB feature matching, Opto-Electronic Engineering, 42(10), 13Google Search
15 
Tareen, S. A. K., Saleem, Z. (2018, March), A comparative analysis of sift, surf, kaze, akaze, orb, and brisk, In 2018 International conference on computing mathematics and engineering technologies (iCoMET), Ieee, 1-10.DOI
16 
Hong, S., Shin, H. S. (2020), Comparative Performance Analysis of Feature Detection and Matching Methods for Lunar Terrain Images, KSCE Journal of Civil and Environmental Engineering Research, 40(4), 437-444.DOI