JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2022-10
(Vol.26 No.5)
10.11112/jksmi.2022.26.5.127
Journal XML
XML
PDF
INFO
REF
References
1
Metha, P. K., Monteiro, P. M. (1993), Concrete: structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 113-171.
2
Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London., 1-15.
3
Oh, K. S., Park, K. T., Kwon, S. J. (2016), Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 51-58.
4
Moon, H. Y., Kim, H. S., Lee, S. T. (2002), Examination on the Deterioration of Concrete due to Seawater Attack, Journal of the Korean Society of Civil Engineers, 22(1a), 171-179.
5
Kirkpatrick, T. J., Weyers, R. E., erson-Cook, C. M., Sprinkel, M. M. (2002), Probabilistic Model for the Chloride-induced Corrosion Service Life of Bridge Decks, Cement and Concrete Research, 32(12), 1943-1960.
6
Lee, S. K., Zielske, J. (2014), An FHWA Special Study: Post- Tensioning Tendon Grout Chloride Thresholds(FHWA-HRT- 14-039, Federal Highway Administration, McLean, 7-20.
7
Nath, P., Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, Procedia Engineering, 14, 1149-1156.
8
Jau, W. C., Tsay, D. S. (1998), A Study of The Basic Engineering Properties of Slag Cement Concrete and Its Resistance to Seawater Corrosion, Cement and Concrete Research, 28(10), 1363-1371.
9
Thamoas, M. D. A., Bamforth, P. B. (1999), Modelling Chloride Diffusion in Concrete Effect of Fly Ash and Slag, Cement and Concrete Research, 29(4), 487-495.
10
KS L 5405, (2016), Fly Ash, Korea Standard Service Network, Republic of Korea, 1-8.
11
Bilodeau, A., Malhotra, V. M., Golden, D. M. (1998), Mechanical properties and durability of structural lightweight concrete incorporating high-volumes of fly ash, ACI International, 178, 449-474.
12
Borah, M. M., Dey, A., Sil, A. (2020), Service life assessment of chloride affected bridge located in coastal region of India considering variation in the inherent structural parameters, Structures, 23, 191-203.
13
Yoon, Y. S., Kim, T. H., Kwon, S. J. (2020), Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 47-56.
14
Thomas M. D, A., Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides(Life365 Manual), SFA, Lovettsville
15
KCI, (2021), KDS 14 20 40-Durability Design Standard for Concrete Structure, Korea Concrete Institute, Seoul, 652-653.
16
ACI, (2017), ACI 365.1R-17-Report on Service Life Prediction, ACI Committee 365, American Concrete Institute, Farmington Hills, 42-45.
17
Yeh, I. C. (1998), Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete research, 28(12), 1797-1808.
18
Kim, I. S., Lee, J. H., Yang, D. S., Park, S. K. (2002), Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network, Journal of the Korean Concrete Institute, 14(4), 457-466.
19
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., Muharemagic, E. (2015), Deep learning applications and challenges in big data analytics, Journal of big data, 2(1), 1-21.
20
Chithra, S., Kumar, S. S., Chinnaraju, K., Ashmita, F. A. (2016), A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks, Construction and Building Materials, 114, 528-535.
21
Lee, S. C. (2003), Prediction of concrete strength using artificial neural networks, Engineering structures, 25(7), 849-857.
22
Jeong, D. H. (2020), A study on prediction of concrete carbonation using deep learning, Master’s thesis, Ansan: Hanyang University, Department of Architectural Engineering.
23
Yoon, Y. S., Kwon, S. J. (2020), Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis, Journal of the Korean Recycled Construction Resources Institute, 8(3), 276-285.
24
Berke, N. S., Hicks, M. C. (1994), Predicting Chloride Profiles in Concrete, CORROSION, 50(3), 234-239.
25
ASTM C 1202, (2005), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and Materials
26
KS F 2405, (2015), Standard Test Method for Compressive Strength of Concrete, KSSN, 1-3.
27
Jeon, G. Y., Park, J. H., Jung, J. W., Yoon, H. C. (2021), Structural Response Estimation Using Gated Recurrent Unit, Journal of the Korean Society of Hazard Mitigation, 21(3), 171-179.