Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Metha, P. K., Monteiro, P. M. (1993), Concrete: structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 113-171.Google Search
2 
Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London., 1-15.Google Search
3 
Oh, K. S., Park, K. T., Kwon, S. J. (2016), Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 51-58.DOI
4 
Moon, H. Y., Kim, H. S., Lee, S. T. (2002), Examination on the Deterioration of Concrete due to Seawater Attack, Journal of the Korean Society of Civil Engineers, 22(1a), 171-179.Google Search
5 
Kirkpatrick, T. J., Weyers, R. E., erson-Cook, C. M., Sprinkel, M. M. (2002), Probabilistic Model for the Chloride-induced Corrosion Service Life of Bridge Decks, Cement and Concrete Research, 32(12), 1943-1960.DOI
6 
Lee, S. K., Zielske, J. (2014), An FHWA Special Study: Post- Tensioning Tendon Grout Chloride Thresholds(FHWA-HRT- 14-039, Federal Highway Administration, McLean, 7-20.URL
7 
Nath, P., Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, Procedia Engineering, 14, 1149-1156.DOI
8 
Jau, W. C., Tsay, D. S. (1998), A Study of The Basic Engineering Properties of Slag Cement Concrete and Its Resistance to Seawater Corrosion, Cement and Concrete Research, 28(10), 1363-1371.DOI
9 
Thamoas, M. D. A., Bamforth, P. B. (1999), Modelling Chloride Diffusion in Concrete Effect of Fly Ash and Slag, Cement and Concrete Research, 29(4), 487-495.DOI
10 
KS L 5405, (2016), Fly Ash, Korea Standard Service Network, Republic of Korea, 1-8.Google Search
11 
Bilodeau, A., Malhotra, V. M., Golden, D. M. (1998), Mechanical properties and durability of structural lightweight concrete incorporating high-volumes of fly ash, ACI International, 178, 449-474.DOI
12 
Borah, M. M., Dey, A., Sil, A. (2020), Service life assessment of chloride affected bridge located in coastal region of India considering variation in the inherent structural parameters, Structures, 23, 191-203.DOI
13 
Yoon, Y. S., Kim, T. H., Kwon, S. J. (2020), Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 47-56.DOI
14 
Thomas M. D, A., Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides(Life365 Manual), SFA, LovettsvilleGoogle Search
15 
KCI, (2021), KDS 14 20 40-Durability Design Standard for Concrete Structure, Korea Concrete Institute, Seoul, 652-653.Google Search
16 
ACI, (2017), ACI 365.1R-17-Report on Service Life Prediction, ACI Committee 365, American Concrete Institute, Farmington Hills, 42-45.Google Search
17 
Yeh, I. C. (1998), Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete research, 28(12), 1797-1808.DOI
18 
Kim, I. S., Lee, J. H., Yang, D. S., Park, S. K. (2002), Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network, Journal of the Korean Concrete Institute, 14(4), 457-466.Google Search
19 
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., Muharemagic, E. (2015), Deep learning applications and challenges in big data analytics, Journal of big data, 2(1), 1-21.DOI
20 
Chithra, S., Kumar, S. S., Chinnaraju, K., Ashmita, F. A. (2016), A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks, Construction and Building Materials, 114, 528-535.DOI
21 
Lee, S. C. (2003), Prediction of concrete strength using artificial neural networks, Engineering structures, 25(7), 849-857.DOI
22 
Jeong, D. H. (2020), A study on prediction of concrete carbonation using deep learning, Master’s thesis, Ansan: Hanyang University, Department of Architectural Engineering.Google Search
23 
Yoon, Y. S., Kwon, S. J. (2020), Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis, Journal of the Korean Recycled Construction Resources Institute, 8(3), 276-285.DOI
24 
Berke, N. S., Hicks, M. C. (1994), Predicting Chloride Profiles in Concrete, CORROSION, 50(3), 234-239.DOI
25 
ASTM C 1202, (2005), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and MaterialsGoogle Search
26 
KS F 2405, (2015), Standard Test Method for Compressive Strength of Concrete, KSSN, 1-3.Google Search
27 
Jeon, G. Y., Park, J. H., Jung, J. W., Yoon, H. C. (2021), Structural Response Estimation Using Gated Recurrent Unit, Journal of the Korean Society of Hazard Mitigation, 21(3), 171-179.DOI