JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2022-12
(Vol.26 No.6)
10.11112/jksmi.2022.26.6.112
Journal XML
XML
PDF
INFO
REF
References
1
Prakash, R., Raman, S. N., Subramanian, C., and Divyah, N. (2022), 6 - Eco-friendly fiber-reinforced concretes, Handbook of Sustainable Concrete and Industrial Waste Management, 109-145.
2
Sahoo, S., Das, B. B., and Mustakim, S. (2017), Acid, alkali, and chloride resistance of concrete composed of low-carbonated fly ash. J. Mater. Civ. Eng., 29(3), 1-12.
3
Bagheri, A. R., Zanganeh, H., and Moalemi, M. M. (2012), Mechanical and durability properties of ternary concretes containing silica fume and low reactivity blast furnace slag, Cem. Concr. Compos, 34(5), 663-670.
4
de Sensale, G. R., (2006), Strength development of concrete with rice husk ash. Cem. Concr. Compos, 28(2), 158-160.
5
Giner, V.T., Ivorra, S., Baeza, F. J., Zornoza, E., and Ferrer, B. (2011), Silica fume admixture effect on the dynamic properties of concrete. Constr. Build. Mater., 25(8), 3272-3277.
6
Obla, K. H., Hill, R.L., Thomas, M. D. A., Shashiprakash, S. G., and Perebatova, O. (2003), Properties of concrete containing ultra-fine fly ash, ACI Mater. J, 100(5), 426-433.
7
Copeland, K. D., Obla, K. H., Hill, R. L., and Thomas, M. D. (2001), A. Ultra Fine Fly Ash for High Performance Concrete. In Construction Institute Sessions at ASCE Civil Engineering Conference , Houston, Texas, USA,166-175.
8
Das, B. B., Singh, D. N., and Pandey, S. P. (2012), Rapid chloride ion permeability of OPC- and PPC-based carbonated concrete. J. Mater. Civ. Eng, 24(5), 606-611.
9
Payá, J., Monzó, J., Borrachero, M. V., Peris-Mora, E., and Amahjour, F. (2000), Mechanical treatment of fly ashes: Part IV. Strength development of ground fly ash-cement mortars cured at different temperatures. Cem. Concr. Res. ,30(4), 543-551.
10
Qian, J., Shi, C., and Wang, Z. (2001) Activation of blended cements containing fly ash. Cem. Concr. Res, 31(8), 1121-1127.
11
Babaian, P. M., Wang, K., Mishulovich, A., Bhattacharja, S., and Shah, S.P. (2003), Effect of mechanochemical activation on reactivity of cement kiln dust-fly ash systems. ACI Mater. J, 100(1), 55-62.
12
Goñi, S., Guerrero, A., Luxán, M.P., and Macı́as, A. (2003), Activation of the fly ash pozzolanic reaction by hydrothermal conditions. Cem. Concr. Res, 33(9), 1399-1405.
13
Wang, K., Shah, S.P., and Mishulovich, A. (2004), Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem. Concr. Res, 34(2), 299–309.
14
Yang, G., Wu, T., Fu, C., and Ye, H. (2021), Effects of activator dosage and silica fume on the properties of Na2SO4-activated high-volume fly ash. Constr. Build. Mater, 278, 1-9.
15
Chuah, S., Pan, Z., Sanjayan, J.G., Wang, C.M., and Duan, W.H. (2014), Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater, 73, 113-124.
16
Du, H., and Pang, S.D. (2015), Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res, 76, 10-19.
17
Li, H., Xiao, H., and Ou, J. (2004), A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem. Concr. Res, 34(3), 435-438.
18
Silvestre, J., Silvestre, N., and de Brito, J.(2016), Review on concrete nanotechnology. Eur. J. Environ. Civ. Eng. 20(4), 455-485.
19
Wang, Y., Hughes, P., Niu, H., and Fan, Y.(2019), A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano silica. J. Clean, 236, 1-12.
20
Yeşilmen, S., Al-Najjar, Y., Balav, M.H., Şahmaran, M., Yıldırım, G., and Lachemi, M. (2015), Nano-modification to improve the ductility of cementitious composites. Cem. Concr. Res, 76, 170-179.
21
Senff, L., Tobaldi, D.M., Lucas, S., Hotza, D., Ferreira, V.M., and Labrincha, J.A. (2013), Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings, Compos. B. Eng., 44(1), 40-47.
22
Li, G. (2004), Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res., 34(6), 1043-1049.
23
Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., and Shah, S.P. (2012), Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials, Constr. Build. Mater., 37, 707-715.
24
Kawashima, S., Hou, P., Corr, D.J., and Shah, S.P. (2013), Modification of cement-based materials with nanoparticles, Cem. Concr. Compos., 36, 8-15.
25
Ghafari, E., Costa, H., Júlio, E., Portugal, A., and Durães, L. (2014), The effect of nano silica addition on flowability, strength and transport properties of ultra high performance concrete, Mater. Des., 59, 1-9.
26
Liu, H., Li, Q., Ni, S., Wang, L., Yue, G., and Guo, Y. (2022), Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials. J. Build. Eng. 46, 103750.
27
Wu, Z., Khayat, K.H., and Shi, C. (2017), Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cem. Concr. Res. 95, 247-256.
28
Chithra, S., Senthil Kumar, S.R.R., and Chinnaraju, K. (2016), The effect of colloidal nano-silica on workability, mechanical and durability properties of high-performance concrete with copper slag as partial fine aggregate. Constr. Build. Mater. 113, 794-804.
29
Xi, B., Zhou, Y., Yu, K., Hu, B., Huang, X., Sui, L., and Xing, F. (2020), Use of nano-SiO2 to develop a high performance green lightweight engineered cementitious composites containing fly ash cenospheres. J. Clean. 262, 1-14.
30
Pacheco-Torgal, F., Miraldo, S., Ding, Y., and Labrincha, J.A. (2013), Targeting HPC with the help of nanoparticles: An overview. Constr. Build. Mater. 38, 365-370.
31
Yu. R., Spiesz. P., and Brouwers. H.J.H. (2014), Effect of nano-silica on the hydration and microstructure development of ultra-high- performance concrete (UHPC) with a low binder amount, Constr. Build. Mater. 65, 140–150.
32
Lee. S.H. (2003) About the pozzolanic reaction. Cement, 158, 40-44.
33
Moon, G.D., Oh, S., and Choi, Y.C.(2016), Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar. Constr. Build. Mater. 124, 1072-1080.
34
Hanif, A., Parthasarathy, P., Ma, H., Fan, T., and Li, Z. (2017), Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cem. Concr. Compos. 81, 35-48.
35
Kim. M.S., Jun. Y.b., Lee. C.H., and Oh. J.E. (2013), Use of CaO as an activator for producing a pricecompetitive non-cement structural binder using ground granulated blast furnace slag. Cem Concr Res. 54, 208-214.