Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Park, H. S. (2021), Land and Transformation, Construction Transportation Journal, Seoul.URL
2 
Kim, J. C., Shin, S. H., and Oh, S. H. (2019), Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake, Journal of the Architectural Institute of Korea Structure & Construction, AIK., 35(3), 3-10.DOI
3 
ANCnews. (2018), Available at: http://www.ancnews.kr/news/article View.html?idxno=6403URL
4 
Zhang, D., Xie, Z., and Wang, C. (2008), Bar section image enhancement and positioning method in on-line steel bar counting and automatic separating system, 2008 Congress on Image and Signal Processing, IEEE, 2, 319-323.DOI
5 
Ying, X., Wei, X., Pei-xin, Y., Qing-da, H., and Chang-hai, C. (2010), Research on an Automatic Counting Method for Steel Bars' Image, 2010 International Conference on Electrical and Control Engineering, IEEE, 1644-1647.DOI
6 
Fan, Z., Lu, J., Qiu, B., Jiang, T., An, K., Josephraj, A. N., and Wei, C. (2019), Automated steel bar counting and center localization with convolutional neural networks, arXiv preprint arXiv, 1906.00891.DOI
7 
Yang, H., and Fu, C. (2019), Quantity Detection of Steel Bars Based on Deep Learning, Open Access Library Journal, OALib, 6(10), 1-9.DOI
8 
Zhu, Y., Tang, C., Liu, H., and Huang, P. (2020), End-face localization and segmentation of steel bar based on convolution neural network, Journal of IEEE Access, IEEE, 8, 74679-74690.DOI
9 
Li, Y., Lu, Y., and Chen, J. (2021), A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector, Automation in Construction, Elsevier, 124, 103602.DOI
10 
Shin, Y., Heo, S., Han, S., Kim, J., and Na, S. (2021), An Image-Based Steel Rebar Size Estimation and Counting Method Using a Convolutional Neural Network Combined with Homography, Buildings, MDPI, 11(10), 463.DOI
11 
Zhang, J., Mo, J., Xu, H., and Liu, Z. (2020), A semantic segmentation method for exposed rebar on dam concrete based on Unet, Journal of Physics, IOP, 1651, 012169DOI
12 
Yuan, X., Smith, A., Sarlo, R., Lippitt, C. D., and Moreu, F. (2021), Automatic evaluation of rebar spacing using LiDAR data. Automation in Construction, Elsevier 131, 103890.DOI
13 
Kardovskyi, Y., and Moon, S. (2021). Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision. Automation in Construction, Elsevier, 130, 103850.DOI
14 
KD S 3504. (2021), Steel bars for concrete reinforcement.URL
15 
Pulcrano, M., et al. (2019), 3D cameras acquisitions for the documentation of cultural heritage, Remote Sensing and Spatial Information Sciences, ISPRS, 42, 639-646.URL
16 
Kang, I, S., et al. (2017), Distortion in VR 360 degree panoramic image, Proceedings of the Korean Society of Broadcast Engineers Conference, Seoul, 194-196.URL
17 
Matterport. (2017), Available at: https://matterport.com/URL
18 
Angeli, Adrien, et al. (2008), Real-time visual loop-closure detection, 2008 IEEE international conference on robotics and automation, IEEE, 1842-1847.DOI
19 
Shi, G., Xu, X., and Dai, Y. (2013), SIFT feature point matching based on improved RANSAC algorithm, In 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, IEEE, 474-477.DOI
20 
Kümmerle, Rainer, et al. (2011), g2o: A general framework for graph optimization, 2011 IEEE International Conference on Robotics and Automation. IEEE, 3607-3613.DOI
21 
Grisetti, Giorgio, et al. (2010), A tutorial on graph-based SLAM, IEEE Intelligent Transportation Systems Magazine, IEEE, 2(4) 31-43.DOI
22 
Gupta, M., Yin, Q., and Nayar, S. K. (2013), Structured light in sunlight, Proceedings of the IEEE International Conference on Computer Vision, 545-552.URL
23 
Tareen, S. A. K., and Saleem, Z. (2018), A comparative analysis of sift, surf, kaze, akaze, orb, and brisk, International conference on computing, mathematics and engineering technologies (iCoMET), IEEE, 1-10.DOI