JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2022-12
(Vol.26 No.6)
10.11112/jksmi.2022.26.6.157
Journal XML
XML
PDF
INFO
REF
References
1
Park, H. S. (2021), Land and Transformation, Construction Transportation Journal, Seoul.
2
Kim, J. C., Shin, S. H., and Oh, S. H. (2019), Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake, Journal of the Architectural Institute of Korea Structure & Construction, AIK., 35(3), 3-10.
3
ANCnews. (2018), Available at: http://www.ancnews.kr/news/article View.html?idxno=6403
4
Zhang, D., Xie, Z., and Wang, C. (2008), Bar section image enhancement and positioning method in on-line steel bar counting and automatic separating system, 2008 Congress on Image and Signal Processing, IEEE, 2, 319-323.
5
Ying, X., Wei, X., Pei-xin, Y., Qing-da, H., and Chang-hai, C. (2010), Research on an Automatic Counting Method for Steel Bars' Image, 2010 International Conference on Electrical and Control Engineering, IEEE, 1644-1647.
6
Fan, Z., Lu, J., Qiu, B., Jiang, T., An, K., Josephraj, A. N., and Wei, C. (2019), Automated steel bar counting and center localization with convolutional neural networks, arXiv preprint arXiv, 1906.00891.
7
Yang, H., and Fu, C. (2019), Quantity Detection of Steel Bars Based on Deep Learning, Open Access Library Journal, OALib, 6(10), 1-9.
8
Zhu, Y., Tang, C., Liu, H., and Huang, P. (2020), End-face localization and segmentation of steel bar based on convolution neural network, Journal of IEEE Access, IEEE, 8, 74679-74690.
9
Li, Y., Lu, Y., and Chen, J. (2021), A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector, Automation in Construction, Elsevier, 124, 103602.
10
Shin, Y., Heo, S., Han, S., Kim, J., and Na, S. (2021), An Image-Based Steel Rebar Size Estimation and Counting Method Using a Convolutional Neural Network Combined with Homography, Buildings, MDPI, 11(10), 463.
11
Zhang, J., Mo, J., Xu, H., and Liu, Z. (2020), A semantic segmentation method for exposed rebar on dam concrete based on Unet, Journal of Physics, IOP, 1651, 012169
12
Yuan, X., Smith, A., Sarlo, R., Lippitt, C. D., and Moreu, F. (2021), Automatic evaluation of rebar spacing using LiDAR data. Automation in Construction, Elsevier 131, 103890.
13
Kardovskyi, Y., and Moon, S. (2021). Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision. Automation in Construction, Elsevier, 130, 103850.
14
KD S 3504. (2021), Steel bars for concrete reinforcement.
15
Pulcrano, M., et al. (2019), 3D cameras acquisitions for the documentation of cultural heritage, Remote Sensing and Spatial Information Sciences, ISPRS, 42, 639-646.
16
Kang, I, S., et al. (2017), Distortion in VR 360 degree panoramic image, Proceedings of the Korean Society of Broadcast Engineers Conference, Seoul, 194-196.
17
Matterport. (2017), Available at: https://matterport.com/
18
Angeli, Adrien, et al. (2008), Real-time visual loop-closure detection, 2008 IEEE international conference on robotics and automation, IEEE, 1842-1847.
19
Shi, G., Xu, X., and Dai, Y. (2013), SIFT feature point matching based on improved RANSAC algorithm, In 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, IEEE, 474-477.
20
Kümmerle, Rainer, et al. (2011), g2o: A general framework for graph optimization, 2011 IEEE International Conference on Robotics and Automation. IEEE, 3607-3613.
21
Grisetti, Giorgio, et al. (2010), A tutorial on graph-based SLAM, IEEE Intelligent Transportation Systems Magazine, IEEE, 2(4) 31-43.
22
Gupta, M., Yin, Q., and Nayar, S. K. (2013), Structured light in sunlight, Proceedings of the IEEE International Conference on Computer Vision, 545-552.
23
Tareen, S. A. K., and Saleem, Z. (2018), A comparative analysis of sift, surf, kaze, akaze, orb, and brisk, International conference on computing, mathematics and engineering technologies (iCoMET), IEEE, 1-10.