Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Ai, D., Jiang, G., Kei, L. S., and Li, C. (2018), Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods, IEEE Access, IEEE., 6, 24452-24463.DOI
2 
Feng, C., Zhang, H., Wang, H., Wang, S., and Li, Y. (2020), Automatic pixel-level crack detection on dam surface using deep convolutional network, Sensors, MDPI, 20(7), 2069.DOI
3 
Gao, R. (2021), Rethink dilated convolution for real-time semantic segmentation, arXiv:2111.09957. [Online]. Available: https://arxiv.org/abs/2111.09957URL
4 
Hong, Y., Pan, H., Sun, W., and Jia, Y. (2021), Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes, arXiv:2101.06085. [Online]. Available: https://arxiv.org/abs/2101.06085URL
5 
Jenkins, M. D., Carr, T. A., Iglesias, M. I., Buggy, T., and Morison, G. (2018), A deep convolutional neural network for semantic pixel-wise segmentation of road and pavement surface cracks, Proceeding European signal processing conference, IEEE., Rome, Italy, 2120-2124.DOI
6 
Jung, H. J., An, H. J., Park, K. T., Jung, K. S., Kim, Y. H., and Lee, J. H. (2021), Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 245-253.DOI
7 
Kawahara, S., Shirato, M., Kajifusa, N., and Kutsukake, T. (2014), Investigation of the tunnel ceiling collapse in the central expressway in Japan, Proceeding Transportation Research Board 93rd Annual Meeting, Washington, D.C., USA, 14, 2559.URL
8 
Kim, B., and Cho, S. (2019), Image‐based concrete crack assessment using mask and region‐based convolutional neural network, Structural Control and Health Monitoring, Wiley, 26(8), e2381.DOI
9 
Li, S., Zhao, X., and Zhou, G. (2019), Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network, Computer-Aided Civil and Infrastructure Engineering, Wiley, 34(7), 616-634.DOI
10 
Liu, Y., Yao, J., Lu, X., Xie, R., and Li, L. (2019), DeepCrack: A deep hierarchical feature learning architecture for crack segmentation, Neurocomputing, Elsevier, 338, 139-153.DOI
11 
Long, J., Shelhamer, E., and Darrell, T. (2015), Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, pp. 3431-3440.URL
12 
Ministry of Land, Infrastructure, Transportation, and Tourism. (2013), White paper on land, infrastructure, transportation, and tourism in Japan, 2013.URL
13 
Ronneberger, O., Fischer, P., and Brox, T. (2015), U-net: Convolutional networks for biomedical image segmentation, Proceeding International Conference on Medical image computing and computer-assisted intervention, Munich, Germany, 234-241.URL
14 
Shim, S., and Jeong, J.-J. (2021), Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety, The Journal of The Korea Institute of Intelligent Transport Systems, 20(2), 95-111.DOI
15 
Shim, S., Kim, J., Cho, G. C., and Lee, S. W. (2020), Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures, IEEE Access, IEEE., 8, 170939-170950.DOI
16 
Shim, S., Kim, J., Cho, G. C., and Lee, S. W. (2022), Stereo- vision-based 3D concrete crack detection using adversarial learning with balanced ensemble discriminator networks, Structural Health Monitoring, SAGE Publication, p. 14759217221097868.DOI
17 
Shim, S., Kim, J., Lee, S. W., and Cho, G. C. (2021), Road surface damage detection based on hierarchical architecture using lightweight auto-encoder network, Automation in Construction, 130, 103833.DOI
18 
Spencer Jr, B. F., Hoskere, V., and Narazaki, Y. (2019), Advances in computer vision-based civil infrastructure inspection and monitoring, Engineering, Elsevier, 5(2), 199-222.DOI
19 
Witcher, T. R. (2017), From disaster to prevention: The silver bridge, Civil Engineering Magazine Archive, ASCE., 87(11), 44-47.URL
20 
Xu, J., Xiong, Z., and Bhattacharyya, S. P. (2022), PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller, arXiv:2206.02066. [Online]. Available: https://arxiv.org/abs/2206.02066URL
21 
Zhang, C., Chang, C. C., and Jamshidi, M. (2020), Concrete bridge surface damage detection using a single‐stage detector, Computer-Aided Civil and Infrastructure Engineering, Wiley, 35(4), 389-409.DOI
22 
Zhang, L., Shen, J., and Zhu, B. (2021), A research on an improved Unet-based concrete crack detection algorithm, Structural Health Monitoring, SAGE Publication, 20(4), 1864-1879.DOI