JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2023-02
(Vol.27 No.1)
10.11112/jksmi.2023.27.1.30
Journal XML
XML
PDF
INFO
REF
References
1
Ministry of Land, Infrastructure and Transport. (2022), Guidelines for safety and maintenance of infrastructures, Korea Ministry of Government Legislation. https://www.law.go.kr/
2
Chang, C. F., and Chen, J. W. (2006). The experimental investigation of concrete carbonation depth, Cement and Concrete Research, 36(9), 1760-1767.
3
KS F 2385. (2018). Permeable asphalt mixtures, Korea Standards Association. https://e-ks.kr/streamdocs/view/sd;streamdocsId=7 2059199200454467
4
Lu, S., Landis, E. N., and Keane, D. T. (2006). X-ray microtomographic studies of pore structure and permeability in Portland cement concrete, Materials and Structures, 39(6), 611-620.
5
Torres-Luque, M., Bastidas-Arteaga, E., Schoefs, F., Sánchez- Silva, M., and Osma, J. F. (2014). Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges, Construction and Building Materials, 68, 68-81.
6
Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klambauer, G., Hochreiter, S., & Nessler, B. (2019). Visual scene understanding for autonomous driving using semantic segmentation, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 285-296.
7
Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., ... & Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine tuning, IEEE Transactions on Medical Imaging, 37(7), 1562-1573.
8
Dogan, G., Arslan, M. H., and Ceylan, M. (2017), Concrete compressive strength detection using image processing based new test method, Measurement, 109, 137-148.
9
Jang, Y., Ahn, Y., and Kim, H. Y. (2019). Estimating compressive strength of concrete using deep convolutional neural networks with digital microscope images, Journal of Computing in Civil Engineering, 33(3), 04019018.
10
Yang, H., Jiao, S. J., and Yin, F. D. (2020). Multilabel Image Classification Based Fresh Concrete Mix Proportion Monitoring Using Improved Convolutional Neural Network, Sensors, 20(16), 4638.
11
Dung, C. V. (2019). Autonomous concrete crack detection using deep fully convolutional neural network, Automation in Construction, 99, 52-58.
12
Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
13
Dhanachandra, N., Manglem, K., and Chanu, Y. J. (2015). Image segmentation using K-means clustering algorithm and subtractive clustering algorithm, Procedia Computer Science, 54, 764-771.
14
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, 3431-3440.
15
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, Springer, Berlin, 234-241.
16
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
17
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv, 1704.04861.
18
Ahn, J., Lee, Y., Vaidya, S., Kim, J. H., & Lee, S. W. (2013). Estimation the porosity of pervious concretes based on X-Ray CT and submerged weight, Journal of the Korean Society of Hazard Mitigation, 13(4), 77-82.
19
Kumar, R., and Bhattacharjee, B. (2003). Porosity, pore size distribution and in situ strength of concrete, Cement and Concrete Research, 33(1), 155-164.
20
Nitto. Concrete tester and surveyor(User manual). (2009). Nitto, Osaka, Japan.
21
KS F 2405. (2022). Test method for compressive strength of concrete, Korea Standards Association. https://e-ks.kr/streamdocs/ vIew/sd;streamdocsId=7205926579 6199707
22
Liashchynskyi, P., and Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: A big comparison for NAS, arXiv preprint arXiv, 1912.06059.