Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Ministry of Land, Infrastructure and Transport. (2022), Guidelines for safety and maintenance of infrastructures, Korea Ministry of Government Legislation. https://www.law.go.kr/URL
2 
Chang, C. F., and Chen, J. W. (2006). The experimental investigation of concrete carbonation depth, Cement and Concrete Research, 36(9), 1760-1767.DOI
3 
KS F 2385. (2018). Permeable asphalt mixtures, Korea Standards Association. https://e-ks.kr/streamdocs/view/sd;streamdocsId=7 2059199200454467URL
4 
Lu, S., Landis, E. N., and Keane, D. T. (2006). X-ray microtomographic studies of pore structure and permeability in Portland cement concrete, Materials and Structures, 39(6), 611-620.DOI
5 
Torres-Luque, M., Bastidas-Arteaga, E., Schoefs, F., Sánchez- Silva, M., and Osma, J. F. (2014). Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges, Construction and Building Materials, 68, 68-81.DOI
6 
Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klambauer, G., Hochreiter, S., & Nessler, B. (2019). Visual scene understanding for autonomous driving using semantic segmentation, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 285-296.DOI
7 
Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., ... & Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine tuning, IEEE Transactions on Medical Imaging, 37(7), 1562-1573.DOI
8 
Dogan, G., Arslan, M. H., and Ceylan, M. (2017), Concrete compressive strength detection using image processing based new test method, Measurement, 109, 137-148.DOI
9 
Jang, Y., Ahn, Y., and Kim, H. Y. (2019). Estimating compressive strength of concrete using deep convolutional neural networks with digital microscope images, Journal of Computing in Civil Engineering, 33(3), 04019018.DOI
10 
Yang, H., Jiao, S. J., and Yin, F. D. (2020). Multilabel Image Classification Based Fresh Concrete Mix Proportion Monitoring Using Improved Convolutional Neural Network, Sensors, 20(16), 4638.DOI
11 
Dung, C. V. (2019). Autonomous concrete crack detection using deep fully convolutional neural network, Automation in Construction, 99, 52-58.DOI
12 
Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.URL
13 
Dhanachandra, N., Manglem, K., and Chanu, Y. J. (2015). Image segmentation using K-means clustering algorithm and subtractive clustering algorithm, Procedia Computer Science, 54, 764-771.DOI
14 
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, 3431-3440.URL
15 
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, Springer, Berlin, 234-241.DOI
16 
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.DOI
17 
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv, 1704.04861.DOI
18 
Ahn, J., Lee, Y., Vaidya, S., Kim, J. H., & Lee, S. W. (2013). Estimation the porosity of pervious concretes based on X-Ray CT and submerged weight, Journal of the Korean Society of Hazard Mitigation, 13(4), 77-82.URL
19 
Kumar, R., and Bhattacharjee, B. (2003). Porosity, pore size distribution and in situ strength of concrete, Cement and Concrete Research, 33(1), 155-164.DOI
20 
Nitto. Concrete tester and surveyor(User manual). (2009). Nitto, Osaka, Japan.URL
21 
KS F 2405. (2022). Test method for compressive strength of concrete, Korea Standards Association. https://e-ks.kr/streamdocs/ vIew/sd;streamdocsId=7205926579 6199707URL
22 
Liashchynskyi, P., and Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: A big comparison for NAS, arXiv preprint arXiv, 1912.06059.DOI