Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Abd Razak, S. N., Shafiq, N., Nikbakht, E. H., Mohammed, B. S., Guillaumat, L., and Farhan, S. A. (2022), Fire performance of fly-ash-based geopolymer concrete: Effect of burning temperature on mechanical and microstructural properties, Materials Today: Proceedings, 66, 2665-2669.DOI
2 
Amran, M., Huang, S. S., Debbarma, S., and Rashid, R. S. (2022), Fire resistance of geopolymer concrete: A critical review, Construction and Building Materials, 324, 126722.DOI
3 
ASTM international (2014), Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM E119-14.URL
4 
Choi, J.-I., Cho, K. H., Yu, H. S., Kim, H. J., and Lee, B. Y. (2020), Fire Resistance of Ultra-High Performance Concrete According to the Amount of Polypropylene Fiber, Journal of the Korean Recycled Construction Resources Institute, 8(2), 212-218. (in Korean)DOI
5 
Consolazio, G. R., McVay, M. C., and RISH III, J. W., (1998), Measurement and prediction of pore pressures in saturated cement mortat subjected to radiant heating, ACI Materials Journal, 95(5), 525-536.URL
6 
Kim, M. S., Sim, S. R., and Ryu, D. W. (2020), A Study on the Spalling Properties of Polymer Modified Cement Mortar Using Polypropylene Fiber, Journal of the Korea Institute of Building Construction, 20(4), 305-311. (in Korean)DOI
7 
Kim, H. G., Park, K. W., Yoon, M. O., and Lee, C. W. (2005), A study on the deterministic temperature-time curves and required resistance times by fire model for assessment of fire resistance of tunnel structures, Journal of Korean Tunnelling and Underground Space Association, 7(2) 165-176. (in Korean)URL
8 
Kim, S. K., and Kim, W. S. (2015), Performance Evaluation of High Strength Concrete with Composite Fibers in Accordance with High Temperature, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(6), 63-71. (in Korean)DOI
9 
Kwon, K. S., and Ryu, D. W. (2015), Fire Resistance Performance Test of High Strength Concrete by Type of Mineral Admixture, Journal of the Korea Institute of Building Construction, 15(6), 597-605. (in Korean)URL
10 
Lee, J. H. (2013), Evaluation on Fire Resistance of Ultra- High-Strength Concrete Depending on Aggregates and Fibers Type, Journal of the Korean Society of Hazard Mitigation, 13(6), 091-097. (in Korean)URL
11 
Long, W. J., Xie, J., Zhang, X., Fang, Y., and Khayat, K. H. (2021), Hydration and microstructure of calcined hydrotalcite activated high-volume fly ash cementitious composite, Cement and Concrete Composites, 123, 104213.DOI
12 
National Fire Protection Association. (2006), Standard Methods of Tests of Fire Resistance of Building Construction and Materials. from ASTM E119-14. 2006:4-299.URL
13 
Serrano, R., Cobo, A., Prieto, M. I., and de las Nieves González, M. (2016), Analysis of fire resistance of concrete with polypropylene or steel fibers, Construction and Building Materials, 122, 302-309.DOI
14 
Song, C., Zhang, G., Lu, Z., Li, X., and Zhao, X. (2023), Fire resistance tests on polypropylene-fiber-reinforced prestressed concrete box bridge girders, Engineering Structures, 282, 115800.DOI
15 
Razak, S. N. A., Guillaumat, L., and Shafiq, N. (2021), Effect of fire flame exposure on basalt and carbon fiber-reinforced concrete. In ICCOEE2020: Proceedings of the 6th International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2020) 573-579.DOI
16 
Yang, H. H., Kim, W. J., Park, D. C., Lee, S. H., and Kim, D. H., (2010), An Evaluation of Fire Resistance and Mock-up Test of the Alumino-Silicate Ceramic Panel, Korea Concrete Institute, Korea, 22(2), 181-182. (in Korean)URL