Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Ahn, H. J., Lee, D. Y., Ji, W. J., Lee, W. J., and Cho, H. H. (2020), Development of Method for Manufacturing Freeform EPS Forms Using Sloped-LOM Type 3D Printer, Journal of the Korea Institute of Building Construction, 20(2), 171-181 (in Korean).DOI
2 
ASTM Standard C39. (2012), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM Standard International.URL
3 
Chang, Z., Liang, M., Chen, Y., Schlangen, E., and Šavija, B. (2023), Does early age creep influence buildability of 3D printed concrete? Insights from numerical simulations, Additive Manufacturing, 77, 103788.DOI
4 
Jha, K. N. (2012), Formwork for Concrete Structures, Tata Mc Graw Hill Education Private Limited.URL
5 
KCI-CT115, (2021), Standard Method of Making Compressive Strength Specimens of Underwater Additive Layering Concrete, Standards of the Korean Concrete Society (in Korean).URL
6 
Khan, M. S., Sanchez, F., and Zhou, H. (2020), 3-D printing of concrete: Beyond horizons, Cement and Concrete Research, 133, 106070.DOI
7 
KS F 2405. (2022), Test method for compressive strength of concrete, Korea Standards Association (in Korean).URL
8 
KS L 5111. (2022), Flow table use in tests of hydraulic cement. Korea Standards Association (in Korean).URL
9 
Lee, D. K. (2017), 3D Printing Technology for Building Construction, Journal of Korean Association for Spatial Structures, 17(4), 16-19 (in Korean).URL
10 
Lee, H. J., Kim, J. H. J., Moon, J. H., Kim, W. W., and Seo, E. A. (2019), Evaluation of the Mechanical Properties of a 3D-Printed Mortar, Materials, 12(24), 4104.DOI
11 
Lee, H. J., Kim, W. W., Seo, E. A., and Moon, J. H. (2020), Effect of Shrinkage Characteristics of Cement-Based Composites by Extrusion and Lamination Process of Construction 3D Printing, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(6), 113-118 (in Korean).DOI
12 
Lee, H. J., Moon, H. J., and Kim, J. J. (2012), An Experimental Study on Pumpability Characteristics of High Strength Concrete Mixed Polymix, Journal of the Korea Concrete Institute, 24(5), 509-516 (in Korean).DOI
13 
Lee, J. Y., and Lee, T. S. (2020), Using In Situ Resources and 3D Printing for Space Exploration Habitat Construction, Journal of Civil and Environmental Engineering Research, 40(3), 337-343 (in Korean).DOI
14 
Liu, H., Liu, C., Wu, Y., Bai, G., He, C., Yao, Y., Zhang, R., and Wang, Y. (2022), 3D printing concrete with recycled coarse aggregates: The influence of pore structure on interlayer adhesion, Cement and Concrete Composites, 134, 104742.DOI
15 
Mazhoud, B., Perrot, A., Picandet, V., Rangeard, D., and Courteille, E. (2019), Underwater 3D printing of cement-based mortar: Construction and Building Materials, 214, 458-467.DOI
16 
Muthukrishnan, S., Ramakrishnan, S., and Sanjayan, J. (2021), Technologies for improving buildability in 3D concrete printing, Cement and Concrete Composites, 122, 104144.DOI
17 
Seo, E. A., Kim, W. W., Kim, S. W., Kwon, H. K., and Lee, H. J. (2023a), Mechanical properties of 3D printed concrete with coarse aggregates and polypropylene fiber in the air and underwater environment, Construction and Building Materials, 378, 131184.DOI
18 
Seo, E. A., Lee, H. J., and Yang, K. H. (2023b), Strength Characteristics of 3D Printed Composite Materials According to Lamination Patterns, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 193-198 (in Korean).DOI
19 
Seo, E. A., Yang, K. H., and Lee, H. J. (2022), Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(2), 76-83 (in Korean).DOI
20 
Wang, L., Ye, K., Wan, Q., Li, Z., and Ma, G. (2023), Inclined 3D concrete printing: Build-up prediction and early-age performance optimization, Additive Manufacturing, 71, 103595.DOI
21 
Wangler, T., Roussel, N., Bos, F. P., Salet, T. A. M., and Flatt, R. J. (2019), Digital Concrete: A Review, Cement and Concrete Research, 123, 105780.DOI
22 
Wolfs, R. J. M., Bos, F. P., and Salet, T. A. M. (2018), Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing, Cement and Concrete Research, 106, 103-116.DOI
23 
Wolfs, R., Bos, D., and Salet, T. (2023), Lessons learned of project Milestone: The first 3D printed concrete house in the Netherlands, Materials Today Proceedings, 1-6.DOI
24 
Won, H. J. (2021), Strength characteristics of 3D printed concrete according to the stacking direction, Journal of the Korea Academia- Industrial Cooperation Society, 22(2), 632-637 (in Korean).DOI
25 
Woo, S. J., Yang, J. M., Lee, H. J., and Kwon, H. K. (2021), Comparison of Properties of 3D-Printed Mortar in Air vs. Underwater, Materials, 14(19), 5888.DOI
26 
Zhang, J., and Khoshnevis, B. (2013), Optimal machine operation planning for construction by Contour Crafting, Automation in Construction, 29, 50-67.DOI
27 
Zhu, B., Pan, J., Nematollahi, B., Zhou, Z., Zhang, Y., and Sanjayan, J. (2019), Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction, Materials & Design, 181, 108088.DOI
28 
Zou, M., Liu, C., Zhang, K., Li, W., Cao, Q., Zhang, L., Gu, T., Zhang, G., and Liu, L. (2023), Evaluation and control of printability and rheological properties of 3D-printed rubberized concrete, Journal of Building Engineering, 80, 107988.DOI