Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
ASCE (2021), 2021 Report Card for America's Infrastructures, American Society of Civil Engineers.URL
2 
ICE (2014), The State of the Nation: Infrastructure 2014, Institution of Civil Engineers.URL
3 
Spencer Jr, B. F., Hoskere, V., and Narazaki, Y. (2019), Advances in computer vision-based civil infrastructure inspection and monitoring, Engineering, 5(2), 199-222.DOI
4 
Celik, O., Dong, C. Z., and Catbas, F. N. (2018), A computer vision approach for the load time history estimation of lively individuals and crowds, Computers & Structures, 200, 32-52.DOI
5 
Kim, S. W., Jeon, B. G., Kim, N. S., and Park, J. C. (2013), Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge, Structural Health Monitoring, 12(5-6), 440-456.DOI
6 
Cha, Y. J., Chen, J. G., and Buyukozturk, O. (2017), Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters, Engineering Structures, 132, 300-313.DOI
7 
Feng, D., and Feng, M. Q. (2015), Model updating of railway bridge using in situ dynamic displacement measurement under trainloads, Journal of Bridge Engineering, 20(12), 04015019.DOI
8 
Poozesh, P., Sarrafi, A., Mao, Z., and Niezrecki, C. (2017), Modal parameter estimation from optically-measured data using a hybrid output-only system identification method, Measurement, 110, 134-145.DOI
9 
Lee, J. J., and Shinozuka, M. (2006), A vision-based system for remote sensing of bridge displacement, Ndt & E International, 39(5), 425-431.DOI
10 
Feng, D., Feng, M. Q., Ozer, E., and Fukuda, Y. (2015), A vision- based sensor for noncontact structural displacement measurement, Sensors, 15(7), 16557-16575.DOI
11 
Yoon, H., Elanwar, H., Choi, H., Golparvar‐Fard, M., and Spencer Jr, B. F. (2016), Target‐free approach for vision‐based structural system identification using consumer‐grade cameras, Structural Control and Health Monitoring, 23(12), 1405-1416.DOI
12 
Xu, Y., and Brownjohn, J. M. (2018). Review of machine-vision based methodologies for displacement measurement in civil structures. Journal of Civil Structural Health Monitoring, 8, 91-110.DOI
13 
Kohut, P., Holak, K., Uhl, T., Ortyl, Ł., Owerko, T., Kuras, P., and Kocierz, R. (2013), Monitoring of a civil structure’s state based on noncontact measurements, Structural Health Monitoring, 12(5-6), 411-429.DOI
14 
Lee, J., Cho, S., and Sim, S. (2014), Vision-Based Displacement Measurement System Operable at Arbitrary Positions, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(6), 123-130 (in Korean).URL
15 
Luo, L., Feng, M. Q., and Wu, J. (2020), A comprehensive alleviation technique for optical‐turbulence‐induced errors in vision‐based displacement measurement, Structural Control and Health Monitoring, 27(3), e2496.DOI
16 
Liu, J., Xue, B., and Cui, L. (2016, November), Analysis of statistical properties of atmospheric turbulence-induced image dancing based on Hilbert transform and dense optical flow, 2016 IEEE 13th International Conference on Signal Processing (ICSP), IEEE, 702-707.DOI
17 
Badali, A. P., Zhang, Y., Carr, P., Thomas, P. J., and Hornsey, R. I. (2005, October). Scale factor in digital cameras. In Photonic Applications in Biosensing and Imaging (Vol. 5969, pp. 556-565). SPIE.DOI
18 
Hijazi, A., Friedl, A., and Kahler, C. J. (2011), Influence of camera’s optical axis non-perpendicularity on measurement accuracy of two-dimensional digital image correlation, Jordan Journal of Mechanical and Industrial Engineering, 5(4), 1-10.URL
19 
Fukuda, Y., Feng, M. Q., and Shinozuka, M. (2010), Cost‐effective vision‐based system for monitoring dynamic response of civil engineering structures, Structural Control and Health Monitoring, 17(8), 918-936.DOI
20 
Lucas, B. D., and Kanade, T. (1981, August), An iterative image registration technique with an application to stereo vision, Proceeding of 7th international joint conference on Artificial intelligence, Canadam Vol. 2, 674-679.URL
21 
Tomasi, C., and Kanade, T. (1991), Detection and tracking of point, Int J Comput Vis, 9, 137-154.URL
22 
Shi, J. and Tomasi, C. (1994, June), Good features to track, 1994 Proceedings of IEEE conference on computer vision and pattern recognition, IEEE, Seattle WA USA, 593-600.DOI
23 
Bay, H., Tuytelaars, T., and Van Gool, L. (2006), Surf: Speeded up robust features, Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Springer Berlin Heidelberg, Graz, Austria, 404-417.DOI
24 
Lowe, D. G. (2004), Distinctive image features from scale- invariant keypoints, International Journal of Computer Vision, 60, 91-110.DOI
25 
Alcantarilla, P. F., Bartoli, A., and Davison, A. J. (2012), KAZE features, Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Springer Berlin Heidelberg, 214-227.DOI
26 
Alsaade, F. (2012), Fast and accurate template matching algorithm based on image pyramid and sum of absolute difference similarity measure, Research Journal of Information Technology, 4(4), 204-211.URL
27 
MacLean, J., and Tsotsos, J. (2000, September), Fast pattern recognition using gradient-descent search in an image pyramid, 15th International Conference on Pattern Recognition, IEEE, 873-877.DOI
28 
Lewis, J. P. (1995, May), Fast normalized cross-correlation, Vision Interface, 120-123.URL
29 
Cho, D., and Gong, J. (2023), A Feasibility Study on Extension of Measurement Distance in Vision Sensor Using Super-Resolution for Dynamic Response Measurement, Sensors, 23(20), 8496.DOI
30 
Savitzky, A., and Golay, M. J. (1964), Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry, 36(8), 1627-1639.DOI