Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Alhawat, M., Khan, A., and Ashour, A. (2020), Evaluation of Steel Corrosion in Concrete Structures Using Impact-Echo Method, Advanced Materials Research, 115, 147-164. DOI: 10.4028/www.scientific.net/AMR.1158.147DOI
2 
ASTM International, (2022), Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method: ASTM C1383-15, West Conshohocken, PA, USA.URL
3 
Coleman, Z. W., Schindler, A. K., and Jetzel, C. M. (2021), Impact-Echo Defect Detection in Reinforced Concrete Bridge Decks without Overlays, Journal of Performance of Constructed Facilities, 35(5), 1-11. DOI: 10.1061/(ASCE)CF.1943-5509.000163DOI
4 
Coleman, Z. W., and Schindler, A. K. (2022), Investigation of Ground-Penetrating Radar, Impact Echo, and Infrared Thermography Methods to Detect Defects in Concrete Bridge Decks, Transportation Research Record, 036119812211010. DOI: 10.1177/03611981221101027DOI
5 
Gibson, A., and Popovics, J. S. (2015), Lamb Wave Basis for Impact-Echo Method Analysis, ASCE Journal of Engineering Mechanics, 131(4), 438-443. DOI: 10.1061/(ASCE)0733-9399 (2005)131:4(43)DOI
6 
Golewski, G. L., and Sadowski, T. (2016), A Study of Mode III Fracture Touchness in Young and Mature Concrete with Fly Ash Additive, Solid State Phenomena, 254, 120-125. DOI: 10.4028/www.scientific.net/SSP.254.120DOI
7 
Gucunski, N., Slabaugh, G. G., Wang, Z., Fang, T., and Maher, A. (2008), Impact echo data from bridge deck testing: Visualization and interpretation, Transportation Research Record, 2050, 111-121. DOI: 10.3141/2050-11DOI
8 
Hong, S.-U., and Cho, Y.-S., (2008), A Study Using Rebound Method and Impact Echo Method for the Comparison of the Compressive Strength of Concrete Slab, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(3), 199-207 (in Korean).URL
9 
Kee, S.-H., and Gucunski, N., (2016), Interpretation of Flexural Vibration Modes from Impact-Echo Testing, ASCE Journal of Infrastructure Systems, 22(3),04016009. DOI: 10.1061/(ASCE)IS.1943-555X.0000291DOI
10 
Jiang, W., Xie, Y., Wu, J., Guo, J., and Long, G. (2021), Identifying Bonding Interface Flaws in CRTS III type Ballastless Track Structure Using the Impact-Echo Method, Engineering Structures, 227(15), 111429. DOI: 10.1016/j.engstruct.2020.111429DOI
11 
Kee, S.-H., Oh, T., Popovics, J. S., Arndt, R. W., and Zhu, J., (2012), Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography, ASCE Journal of Journal of Bridge Engineering, 17(6), 928-939. DOI: 10.1061/(ASCE)BE.1943-5592.0000350DOI
12 
Khan, M., and Ali, M. (2019), Improvement in concrete behavior with fly ash, Silica-Fume and Coconut Fibres, 203(10), 174-187. DOI: 10.1016/j.conbuildmat.2019.01.103DOI
13 
Kim, J.-S., Lee, C. J., and Shin, S. W., (2011), Non-contact Impact-Echo Based Detection of Damages in Concrete Slabs Using Low Cost Air Pressure Sensors, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(3), 171-177 (in Korean).URL
14 
Korean Standard Association, (2022), Korean Standard for Compressive STrength of Concrete: KS F 2405, Seoul, South Korea.URL
15 
Lam, L., Wong, Y.L, and Poon, C.S. (1998), Effect of Fly Ash and Silica Fume on Compressive and Fracture Behaviors of Concrete, Cement and Concrete Research, 28(2), 271-283. DOI: 10.1016/S0008-8846(97)00269-XDOI
16 
Lee, C., Kee, S., Kang, J., Choi, B., and Lee, J. (2020), Interpretation of Impact-echo testing data from a fire-damaged reinforced concrete slab using a discrete layered concrete damage model, Sensors, 20(20), 5838. DOI: 10.3390/s20205838DOI
17 
Lee, I., Kwon, S., Park, J., and Oh, T. (2018), The effective near-surface defect identification by dynamic behavior associated with both impact-echo and flexural modes for concrete structures, KSCE Journal of Civil Engineering, 22(2), 747-754. DOI: 10.1007/s12205-017-1433-9DOI
18 
Lee, S.-H., Kim, S. J., Endo, T., and Sagara, Y., (2011), Probe of Unfilled Sheath of Prestressed-Concrete Girder Bridge Using Impact-Echo Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(1), 112-119 (in Korean).URL
19 
Liang, M., and Su, P. (2001), Detection of the corrosion damage of rebar in concrete using Impact-echo method, Cement and Concrete Research, 31(10), 1427-1436. DOI: 10.1016/S0008-8846(01)00569-5DOI
20 
Nowotarski, P., Dubas, S., and Milwicz, R. (2017), Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing, IOP Conference Series: Materials Science and Engineering, 245(3), 232098. DOI: 10.1088/1757-899X/245/3/032098DOI
21 
Oh, B. D., Choi, H., Song, H. J., Kim, J. D., Park C. Y., and Kim, Y. S. (2020), Detection of Defect Inside Duct Using Recurrent Neural Network, Sensors and Materials, 32(1), 171-182. DOI: 10.18494/SAM.2020.2578DOI
22 
Razak, N., Senin, S., and Hamid, R. (2015), Detection of sizes and locations air voids in reinforced concrete slab using ground penetrating radar and Impact-Echo methods, Jurnal Teknologi, 74(3), 63-67. DOI: 10.11113/jt.v74.4553DOI
23 
Rickad, L., and Choi, W. (2016), Evaluation of Subsurface Damage in Concrete Deck Joints Using Impact Echo Method, Advances in Materials Science and Engineering, 8230398. DOI: 10.1155/2016/8230398DOI
24 
Sano, S., Mizobuchi, T., Shimbo, H., Ozeki, T., and Nojima, J. (2022), Computational Modelling of Concrete and Concrete Structures, CRC Press, London, 148-153. DOI: 10.1201/9781003316404DOI
25 
Zaki, A., Chai, H. K., Aggelis, D. G., and Alver, N. (2015), Non- Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique, Sensors, 15, 19069-19101. DOI: 10.3390/s150819069DOI
26 
Zhang, J. K., Yan, W., and Cui, D. M. (2016), Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines, Sensors, 16, 1-17. DOI: 10.3390/s16040447DOI