JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2024-12
(Vol.28 No.6)
10.11112/jksmi.2024.28.6.69
Journal XML
XML
PDF
INFO
REF
References
1
Huth, O., Feltrin, G., Maeck, J., Kilic, N., and Motavalli, M., (2005), Damage identification using modal data: Experiences on a prestressed concrete bridge, Journal of Structural Engineering, 131(12), 1898-1910.
2
Shadan, F., Khoshnoudian, F., and Esfandiari, A., (2016), A frequency response‐based structural damage identification using model updating method, Structural Control and Health Monitoring, 23(2), 286-302.
3
Azim, M. R., and Gül, M., (2019), Damage detection of steel girder railway bridges utilizing operational vibration response, Structural Control and Health Monitoring, 26(11), e2447.
4
Ghorbani, E., Buyukozturk, O., and Cha, Y. J., (2020), Hybrid output-only structural system identification using random decrement and Kalman filter, Mechanical Systems and Signal Processing, 144 ,106977.
5
Entezami, A., Mariani, S., and Shariatmadar, H., (2022), Damage Detectionin Largely Unobserved Structures under Varying Environmental Conditions: An AutoRegressive Spectrum and Multi-Level Machine Learning Methodology, Sensors, 22(4), 1400.
6
Meixedo, A., Santos, J., Ribeiro, D., Calçada, R., and Todd, M. D., (2022), Online unsupervised detection of structural changes using train–induced dynamic responses, Mechanical Systems and Signal Processing, 165, 108268.
7
Salawu, O. S., (1997), Detection of structural damage through changes in frequency: a review, Engineering structures, 19(9), 718-723.
8
Mousavi, Z., Ettefagh, M. M., Sadeghi, M. H., and Razavi, S. N., (2020), Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state, Applied Acoustics, 168, 107402.
9
Seventekidis, P., Giagopoulos, D., and Koutsoupakis, J., (2023), Simulation Error Influence on Damage Identification Classifiers Trained by Numerical Data, Society for Experimental Mechanics Annual Conference and Exposition, 11-25.
10
Rastin, Z., Ghodrati Amiri, G., and Darvishan, E., (2021), Unsupervised structural damage detection technique based on a deep convolutional autoencoder, Shock and Vibration, 2021(1), 6658575.
11
Kim, B., (2023), Deep Learning-Based Assessment of Civil Structure: Inspection using Instance Segmentation and Monitoring using Semi-Supervised Learning [Ph.D. Dissertation, University of Seoul]. University of Seoul.