JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-06
(Vol.29 No.3)
10.11112/jksmi.2025.29.3.20
Journal XML
XML
PDF
INFO
REF
References
1
Juga, I., Nurmi, P., and Hippi, M. (2013), Statistical modelling of wintertime road surface friction, Meteorological Applications, 20(3), 318-329.
2
Pu, Z., Liu, C., Shi, X., Cui, Z., and Wang, Y. (2021), Road surface friction prediction using long short-term memory neural network based on historical data, Journal of Intelligent Transportation Systems, 26(1), 34-45.
3
Bogren, J., and Gustavsson, T. (1991), Nocturnal air and road surface temperature variations in complex terrain, International Journal of Climatology, 11(4), 443-455.
4
Lee, M., Kim, Y., Jun, Y., and Yong, H. (2018), Prediction of road surface state caused by weather condition using machine learning model, Journal of Information Technology and Architecture, 15(4), 521-536 (in Korean).
5
Lim, H. S., and Kim, S. T. (2020), A study on road ice prediction by applying road freezing evaluation model, Journal of the Korean Applied Science and Technology, 37(6), 1507-1516 (in Korean).
6
Kim, B., Kim, E., Jung, S., Kim, M., Kim, J., and Kim, S. (2023), PM2. 5 Concentration forecasting using weighted Bi-LSTM and random forest feature importance-based feature selection, Atmosphere, 14(6), 968 (in Korean).
7
Lin, S., and Tian, H. (2020, June), Short-term metro passenger flow prediction based on random forest and LSTM, In 2020 IEEE 4th information technology, networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 2520-2526), IEEE.
8
Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005), Applied linear statistical models. McGraw-hill.
9
Feng, F., and Fu, L. (2015), Winter road surface condition forecasting, Journal of Infrastructure Systems, 21(3), 04014049.
10
Jaiswal, J. K., and Samikannu, R. (2017, February), Application of random forest algorithm on feature subset selection and classification and regression, In 2017 world congress on computing and communication technologies (WCCCT) (pp. 65-68), IEEE.
11
Takasaki, Y., Saldana, M., Ito, J., and Sano, K. (2022), Development of a method for estimating road surface condition in winter using random forest, Asian Transport Studies, 8, 100077.
12
Khan, M. N., and Ahmed, M. M. (2022), Weather and surface condition detection based on road-side webcams: Application of pre-trained convolutional neural network, International Journal of Transportation Science and Technology, 11(3), 468-483.
13
Korea Road Traffic Authority (KRTA) (2023), Traffic Accident Analysis System (TAAS), Sejong, South Korea. Available at: https://taas.koroad.or.kr