JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-10
(Vol.29 No.5)
10.11112/jksmi.2025.29.5.29
Journal XML
XML
PDF
INFO
REF
References
1
Shin, Y., Heo, S., Han, S., Kim, J., and Na, S. (2021), An image-based steel rebar size estimation and counting method using a convolutional neural network combined with homography, Buildings, 11(10), 463.
2
Seong, J., Kim, H. S., and Jung, H. J. (2023), The detection system for a danger state of a collision between construction equipment and workers using fixed CCTV on construction sites, Sensors, 23(20), 8371.
3
Lee, M.-H., Woo, U., Choi, H., Kang, S., and Choi, K.-K. (2022), Development of remote measurement method for reinforcement information in construction field using 360 degrees camera, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(6), 157–166 (in Korean).
4
Feng, J., Hamilton-Fletcher, G., Ballem, N., Batavia, M., Wang, Y., Zhong, J., Porfiri, M., and Rizzo, J. R. (2025), Robust computer-vision based construction site detection for assistive-technology applications. arXiv preprint arXiv:2503.04139.
5
Sun, T., Fan, Q., and Shao, Y. (2025), Deep learning-based rebar detection and instance segmentation in images, Advanced Engineering Informatics, 65, 103224.
6
O’Byrne, M., Vibhoothi, V., Sugrue, M., and Kokaram, A. (2022), Impact of video compression on the performance of object detection systems for surveillance applications. arXiv.
7
Zhang, J., Zhou, Y., Bi, J., Xue, Y., Deng, W., He, W., Zhao, T., Sun, K., Tong, T., Gao, Q., and Zhang, Q. (2024), A blind image super-resolution network guided by kernel estimation and structural prior knowledge. Scientific Reports, 14(1), 9525.
8
Kulinan, A. S., Park, M., Aung, P. P. W., Cha, G., and Park, S. (2024), Advancing construction site workforce safety monitoring through BIM and computer vision integration, Automation in Construction, 158, 105227.
9
Wang, S. (2025), Automated non-PPE detection on construction sites using YOLOv10 and transformer architectures for surveillance and body worn cameras with benchmark datasets, Scientific Reports, 15(1), 27043.
10
Chharia, A., Ren, T., Furuhata, T., and Shimada, K. (2025), Safe-Construct: Redefining Construction Safety Violation Recognition as 3D Multi-View Engagement Task. In Proceedings of the Computer Vision and Pattern Recognition Conference (pp. 5811-5820).
11
Xiao, B., Wang, Y., Zhang, Y., Chen, C., and Darko, A. (2024), Automated daily report generation from construction videos using ChatGPT and computer vision, Automation in Construction, 168, 105874.
12
Zhang, L., Dong, R., Yuan, S., Li, W., Zheng, J., and Fu, H. (2021), Making low-resolution satellite images reborn: a deep learning approach for super-resolution building extraction, Remote Sensing, 13(15), 2872.
13
Zeng, T., Wang, J., Wang, X., Zhang, Y., and Ren, B. (2023), An efficient deep learning-based high-definition image compressed sensing framework for large-scene construction site monitoring, Sensors, 23(5), 2563.
14
Asif, M., Abrar, M., Ullah, F., Salam, A., Amin, F., de la Torre, I., Villar, M. G., Garay, H., and Choi, G. S. (2025), A novel hybrid deep learning approach for super-resolution and objects detection in remote sensing, Scientific Reports, 15(1), 17221.
15
Jiang, C., and Chen, Q. (2020), Construction of blind restoration model for super-resolution image based on chaotic neural network, Chaos, Solitons & Fractals, 131, 109498.
16
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... and Polosukhin, I. (2017), Attention is all you need. Advances in neural information processing systems, 30.
17
Li, J., Fang, F., Mei, K., and Zhang, G. (2018), Multi-scale residual network for image super-resolution. In Proceedings of the European conference on computer vision (ECCV) (pp. 517-532).
18
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu, Y. (2018), Image super-resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 286-301).
19
Liu, J., Wang, Y., Xiang, S., and Pan, C. (2021), Han: An efficient hierarchical self-attention network for skeleton-based gesture recognition. arXiv preprint arXiv:2106.13391.
20
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022), High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).