Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Talaat, F. M., and ZainEldin, H. (2023), An improved fire detection approach based on YOLO-v8 for smart cities, Neural Computing and Applications, 35(28), 20939-20954.DOI
2 
National Fire Agency (2024), Enhancing Fire Safety Management at Construction Sites in Spring. Seoul, Korea: National Fire Agency. Available at: www.nfa.go.krURL
3 
Bu, F., and Gharajeh, M. S. (2019), Intelligent and vision-based fire detection systems: A survey, Image and Vision Computing, 91, 103803.DOI
4 
Kumar, S., Gupta, H., Yadav, D., Ansari, I. A., and Verma, O. P. (2022), YOLOv4 algorithm for the real-time detection of fire and personal protective equipments at construction sites, Multimedia Tools and Applications, 81(16), 22163-22183.DOI
5 
Ann, H., and Koo, K. Y. (2023), Deep learning based fire risk detection on construction sites, Sensors, 23(22), 9095.DOI
6 
Ko, B., Jung, J. H., and Nam, J. Y. (2014), Fire detection and 3D surface reconstruction based on stereoscopic pictures and probabilistic fuzzy logic, Fire Safety Journal, 68, 61-70.DOI
7 
Zou, Z., Chen, K., Shi, Z., Guo, Y., and Ye, J. (2023), Object detection in 20 years: A survey, Proceedings of the IEEE, 111(3), 257-276.DOI
8 
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016), You only look once: Unified, real-time object detection, In Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.URL
9 
Terven, J., Cordova-Esparza, D. M., and Romero-Gonzalez, J. A. (2023), A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas, Machine learning and knowledge extraction, 5(4), 1680-1716.DOI
10 
Tariq, M. F., and Javed, M. A. (2025), Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware. arXiv preprint arXiv:2504.09900.DOI
11 
Kodors, S., Sondors, M., Apeinans, I., Zarembo, I., Lacis, G., Rubauskis, E., and Karklina, K. (2024), Importance of mosaic augmentation for agricultural image dataset, Agronomy Research, 22(1).URL
12 
Nisa, U. (2025), Image augmentation approaches for small and tiny object detection in aerial images: A review, Multimedia Tools and Applications, 84(19), 21521-21568.DOI
13 
Abdusalomov, A., Baratov, N., Kutlimuratov, A., and Whangbo, T. K. (2021), An improvement of the fire detection and classification method using YOLOv3 for surveillance systems, Sensors, 21(19), 6519.DOI
14 
Avazov, K., Mukhiddinov, M., Makhmudov, F., and Cho, Y. I. (2021), Fire detection method in smart city environments using a deep-learning-based approach, Electronics, 11(1), 73.DOI
15 
Wang, Z., Wu, L., Li, T., and Shi, P. (2022), A smoke detection model based on improved YOLOv5, Mathematics, 10(7), 1190.DOI
16 
Talaat, F. M., and ZainEldin, H. (2023), An improved fire detection approach based on YOLO-v8 for smart cities, Neural Computing and Applications, 35(28), 20939-20954.DOI
17 
Guan, Z., Miao, X., Mu, Y., Sun, Q., Ye, Q., and Gao, D. (2022), Forest fire segmentation from aerial imagery data using an improved instance segmentation model, Remote Sensing, 14(13), 3159.DOI
18 
Pimpalkar, S., and Patwa, B. (2025), Comparative Analysis of YOLOv8 and Faster R-CNN in Fire and Smoke Detection. In 2025 International Conference on Emerging Smart Computing and Informatics (ESCI), 1-5.DOI
19 
Lopez-Alanis, A., De-la-Torre-Gutierrez, H., Hernandez-Aguirre, A., and Orvananos-Guerrero, M. T. (2025), Fuzzy rule-based combination model for the fire pixel segmentation. IEEE Access.DOI
20 
Zou, R., Xin, Z., Liao, G., Huang, P., Wang, R., and Qiao, Y. (2025), A fire segmentation method with flame detail enhancement U-Net in multispectral remote sensing images under category imbalance, Remote Sensing, 17(13), 2175.DOI
21 
Hirschmuller, H., and Scharstein, D. (2007), Evaluation of cost functions for stereo matching, In 2007 IEEE conference on computer vision and pattern recognition, IEEE., 1-8.DOI
22 
Scharstein, D., and Szeliski, R. (2002), A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, International Journal of Computer Vision, 47, 7-42.DOI
23 
Hirschmuller, H. (2007), Stereo processing by semiglobal matching and mutual information, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328-341.DOI
24 
Setyawan, R. A., Sunoko, R., Choiron, M. A., and Rahardjo, P. M. (2018), Implementation of stereo vision semi-global block matching methods for distance measurement, Indonesian Journal of Electrical Engineering and Computer Science, 12(2), 585.DOI
25 
Wang, Z., Ding, Y., Zhang, T., and Huang, X. (2023), Automatic real-time fire distance, size and power measurement driven by stereo camera and deep learning, Fire Safety Journal, 140, 103891.DOI
26 
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011), ORB: An efficient alternative to SIFT or SURF, In 2011 International conference on computer vision, IEEE, 2564-2571.DOI
27 
Rosten, E., and Drummond, T. (2006), Machine learning for high-speed corner detection, Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Springer Berlin Heidelberg, Graz, Austria, 430-443.DOI
28 
Harris, C., and Stephens, M. (1988), A combined corner and edge detector, In Alvey Vision Conference, 15(50), 10-5244.URL
29 
Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010), Brief: Binary robust independent elementary features, Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Springer Berlin Heidelberg, Heraklion, Crete, Greece, 778-792.DOI
30 
Grisetti, G., Stachniss, C., and Burgard, W. (2007), Improved techniques for grid mapping with rao-blackwellized particle filters, IEEE Transactions on Robotics, 23(1), 34-46.DOI