JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-10
(Vol.29 No.5)
10.11112/jksmi.2025.29.5.66
Journal XML
XML
PDF
INFO
REF
References
1
Talaat, F. M., and ZainEldin, H. (2023), An improved fire detection approach based on YOLO-v8 for smart cities, Neural Computing and Applications, 35(28), 20939-20954.
2
National Fire Agency (2024), Enhancing Fire Safety Management at Construction Sites in Spring. Seoul, Korea: National Fire Agency. Available at: www.nfa.go.kr
3
Bu, F., and Gharajeh, M. S. (2019), Intelligent and vision-based fire detection systems: A survey, Image and Vision Computing, 91, 103803.
4
Kumar, S., Gupta, H., Yadav, D., Ansari, I. A., and Verma, O. P. (2022), YOLOv4 algorithm for the real-time detection of fire and personal protective equipments at construction sites, Multimedia Tools and Applications, 81(16), 22163-22183.
5
Ann, H., and Koo, K. Y. (2023), Deep learning based fire risk detection on construction sites, Sensors, 23(22), 9095.
6
Ko, B., Jung, J. H., and Nam, J. Y. (2014), Fire detection and 3D surface reconstruction based on stereoscopic pictures and probabilistic fuzzy logic, Fire Safety Journal, 68, 61-70.
7
Zou, Z., Chen, K., Shi, Z., Guo, Y., and Ye, J. (2023), Object detection in 20 years: A survey, Proceedings of the IEEE, 111(3), 257-276.
8
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016), You only look once: Unified, real-time object detection, In Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.
9
Terven, J., Cordova-Esparza, D. M., and Romero-Gonzalez, J. A. (2023), A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas, Machine learning and knowledge extraction, 5(4), 1680-1716.
10
Tariq, M. F., and Javed, M. A. (2025), Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware. arXiv preprint arXiv:2504.09900.
11
Kodors, S., Sondors, M., Apeinans, I., Zarembo, I., Lacis, G., Rubauskis, E., and Karklina, K. (2024), Importance of mosaic augmentation for agricultural image dataset, Agronomy Research, 22(1).
12
Nisa, U. (2025), Image augmentation approaches for small and tiny object detection in aerial images: A review, Multimedia Tools and Applications, 84(19), 21521-21568.
13
Abdusalomov, A., Baratov, N., Kutlimuratov, A., and Whangbo, T. K. (2021), An improvement of the fire detection and classification method using YOLOv3 for surveillance systems, Sensors, 21(19), 6519.
14
Avazov, K., Mukhiddinov, M., Makhmudov, F., and Cho, Y. I. (2021), Fire detection method in smart city environments using a deep-learning-based approach, Electronics, 11(1), 73.
15
Wang, Z., Wu, L., Li, T., and Shi, P. (2022), A smoke detection model based on improved YOLOv5, Mathematics, 10(7), 1190.
16
Talaat, F. M., and ZainEldin, H. (2023), An improved fire detection approach based on YOLO-v8 for smart cities, Neural Computing and Applications, 35(28), 20939-20954.
17
Guan, Z., Miao, X., Mu, Y., Sun, Q., Ye, Q., and Gao, D. (2022), Forest fire segmentation from aerial imagery data using an improved instance segmentation model, Remote Sensing, 14(13), 3159.
18
Pimpalkar, S., and Patwa, B. (2025), Comparative Analysis of YOLOv8 and Faster R-CNN in Fire and Smoke Detection. In 2025 International Conference on Emerging Smart Computing and Informatics (ESCI), 1-5.
19
Lopez-Alanis, A., De-la-Torre-Gutierrez, H., Hernandez-Aguirre, A., and Orvananos-Guerrero, M. T. (2025), Fuzzy rule-based combination model for the fire pixel segmentation. IEEE Access.
20
Zou, R., Xin, Z., Liao, G., Huang, P., Wang, R., and Qiao, Y. (2025), A fire segmentation method with flame detail enhancement U-Net in multispectral remote sensing images under category imbalance, Remote Sensing, 17(13), 2175.
21
Hirschmuller, H., and Scharstein, D. (2007), Evaluation of cost functions for stereo matching, In 2007 IEEE conference on computer vision and pattern recognition, IEEE., 1-8.
22
Scharstein, D., and Szeliski, R. (2002), A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, International Journal of Computer Vision, 47, 7-42.
23
Hirschmuller, H. (2007), Stereo processing by semiglobal matching and mutual information, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328-341.
24
Setyawan, R. A., Sunoko, R., Choiron, M. A., and Rahardjo, P. M. (2018), Implementation of stereo vision semi-global block matching methods for distance measurement, Indonesian Journal of Electrical Engineering and Computer Science, 12(2), 585.
25
Wang, Z., Ding, Y., Zhang, T., and Huang, X. (2023), Automatic real-time fire distance, size and power measurement driven by stereo camera and deep learning, Fire Safety Journal, 140, 103891.
26
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011), ORB: An efficient alternative to SIFT or SURF, In 2011 International conference on computer vision, IEEE, 2564-2571.
27
Rosten, E., and Drummond, T. (2006), Machine learning for high-speed corner detection, Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Springer Berlin Heidelberg, Graz, Austria, 430-443.
28
Harris, C., and Stephens, M. (1988), A combined corner and edge detector, In Alvey Vision Conference, 15(50), 10-5244.
29
Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010), Brief: Binary robust independent elementary features, Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Springer Berlin Heidelberg, Heraklion, Crete, Greece, 778-792.
30
Grisetti, G., Stachniss, C., and Burgard, W. (2007), Improved techniques for grid mapping with rao-blackwellized particle filters, IEEE Transactions on Robotics, 23(1), 34-46.