Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Ali, L., Alnajjar, F., Al Jassmi, H., Gocho, M., Khan, W., Adel Serhani, M. (2021), Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures, Sensors, 21(5), 1688DOI
2 
Asvitha Valli, S., Ravi Kumar, M. S. (2018), Review on the mechanism and mitigation of cracks in concrete, Applications in Engineering Science, 16, 100154DOI
3 
BaniMustafa, A., AbdelHalim, R., Bulkrock, O., Al-Humouz, A. (2023), Deep learning for assessing severity of cracks in concrete structures, International Journal of Computers Communications & Control, 18(1), 4977Google Search
4 
Cha, Y. J., Choi, W. R., Büyüköztürk, O. (2017), Deep learning-based crack damage detection using convolutional neural networks, Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378.DOI
5 
Diniz, J. C. N., Paiva, A. C., Junior, G. B., Almeida, J. D. S., Silva, A. C., Cunha, A. M. T. S., Cunha, S. C. A. P. S. (2023), Amethod for detecting pathologies in concrete structures using deep neural networks, Applied Sciences, 13(9), 5763DOI
6 
Dorafshan, S., Thomas, R. J., Maguire, M. (2018), SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks, Data in Brief, 21, 1664-1668.DOI
7 
Jeon, E. I., Lee, I. P., Kim, D. G. (2023), Crack detection in concrete using deep learning for underground facility safety inspection, Journal of Korean Tunneling and Underground Space Association, 25(6), 555-567.DOI
8 
Kharthik, K. S. B., Michael Onyema, E., Mallik, S., Siva Prasad, B. V. V., Qin, H., Selvi, C., Sikha, O. K. (2024), Transfer learned deep based crack detection using support vector machine: a comparative study, Scientific Reports, 14, 14517DOI
9 
Kim, B. H., Cho, S. J. (2020), Automated multiple concrete damage detection using instance segmentation deep learning model, Applied Sciences, 10(22), 8008DOI
10 
Kim, J., Shim, S. B., Cha, Y. H., Cho, G. C. (2021), Lightweight pixel-wise segmentation for efficient concrete crack detection using hierarchical convolutional neural network, Smart Materials and Structures, 30, 045023DOI
11 
Kim, B. H., Cho, S. J., Chae, H. J., Kim, H. K., Kang, J. H. (2021), Development of crack detection system for highway tunnels using imaging device and deep learning, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(4), 65-74.Google Search
12 
Li, S., Zhao, X. (2019), Image-based concrete crack detection using convolutional neural network and exhaustive search technique, Advances in Civil Engineering, 2019, 6520620DOI
13 
Mazni, M., Husain, A. R., Shapiai, M. I., Ibrahim, I. S., Zulkifli, R., Anggara, D. W. (2024), Identification of concrete cracks using deep learning models: A systematic review, Applications of Modelling and Simulation, 8, 1-25.Google Search
14 
Islam, M. M., Hossain, M. B., Akhtar, M. N., Ali Moni, M., Hasan, K. F. (2022), CNN based on transfer learning models using data augmentation and transformation for detection of concrete crack, Algorithms, 15(8), 287DOI
15 
Philip, R. E., Andrushia, A. D., Nammalvar, A., Gurupatham, B. G. A., Roy, K. (2023), A comparative study on crack detection in concrete walls using transfer learning techniques, Journal of Composites Science, 7(4), 169DOI
16 
Roy, S., Yogi, B., Majumdar, R., Ghosh, P., Das, S. K. (2025), Deep learning‑based crack detection and prediction for structural health monitoring, Discover Applied Sciences, 7, 674Google Search
17 
Zadeh, S. S., Aalipour birgani, S., Khorshidi, M., Kooban, F. (2024), Concrete surface crack detection with convolutional-based deep learning models, International Journal of Novel Research in Civil Structural and Earth Sciences, 10(3), 25-35.DOI
18 
Su, C., Wang, W. (2020), Concrete cracks detection using convolutional neural network based on transfer learning, Mathematical Problems in Engineering, 2020, 7240129DOI
19 
Yang, L., Zhu, D., Liu, X. (2024), An efficient method for identifying surface damage in hydraulic concrete buildings, Scientific Reports, 14, 31277DOI