JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-12
(Vol.29 No.6)
10.11112/jksmi.2025.29.6.49
Journal XML
XML
PDF
INFO
REF
References
1
Zhang, W., Zhou, T., Wu, P. (2024), Anthropogenic amplification of precipitation variability over the past century, Science, 385(6652), 427-432.
2
Rose, A., Wei, D., Machado, J., Spencer, K. (2022), Benefit–cost analysis of low-cost flood inundation sensors, Natural Hazards Review, 23(4), 04022037
3
Wienhold, K. J., Li, D., Li, W., Fang, Z. N. (2023), Flood inundation and depth mapping using unmanned aerial vehicles combined with high-resolution multispectral imagery, Hydrology, 10(8), 158
4
Tanim, A. H., McRae, C. B., Tavakol-Davani, H., Goharian, E. (2022), Flood detection in urban areas using satellite imagery and machine learning, Water, 12(4), 1140
5
Van, L. N., Nguyen, G. V., Kim, Y., Do, M. T. T., Kwon, S., Lee, J., Lee, G. (2025), Rapid urban flood detection using PlanetScope imagery and thresholding methods, Water, 17(5), 1005
6
Misra, A., White, K., Nsutezo, S. F., Straka, III, W., Lavista, J. (2025), Mapping global floods with 10 years of satellite radar data, Nature Communications, 16, 5762
7
Fakhri, F., Gkanatsios, I. (2025), Quantitative evaluation of flood extent detection using attention U-Net: Case studies from Eastern South Wales, Australia in March 2021 and July 2022, Scientific Reports, 15, 12377
8
Woo, H., Choi, H., Kim, M., Noh, S. J. (2024), Estimating urban inundation using physics-informed deep learning: A case study of the Oncheon-cheon catchment, Journal of Korea Water Resources Association, 57(12), 989-1001.
9
Zhao, J., Wang, X., Zhang, C., Hu, J., Wan, J., Cheng, L., Shi, S., Zhu, X. (2025), Urban waterlogging monitoring and recognition in low-light scenarios using surveillance videos and deep learning, Water, 17(2), 707
10
Zamanizadeh, M., Cetin, M., Shahabi, A., Tahvildari, N. (2025), Depth estimation in urban flooding using surveillance cameras and high-resolution LiDAR data, Environmental Modelling and Software, 192, 106572
11
Zhong, P., Liu, Y., Zheng, H., Zhao, J. (2023), Detection of urban flood inundation from traffic images using deep learning methods, Water Resources Management, 38, 287-301.
12
Goodfellow, I., Bengio, Y., Courville, A. (2016), Deep learning
13
Lamichhane, B. R., Srijuntongsiri, G., Horanont, T. (2025), CNN based 2D object detection techniques: A review, Frontiers in Computer Science, 6, 1475664
14
Szeliski, R. (2022), Computer vision: Algorithms and applications (2nd ed.)
15
Masoumian, A., Marei, D. G. F., Abdulwahab, S., Cristiano, J., Puig, D., Rashwan, H. A. (2021), Absolute distance prediction based on deep learning object detection and monocular depth estimation, arXiv preprint
16
Reis, D., Hong, J., Kupec, J., Daoudi, A. (2024), Real-time flying object detection with YOLOv8, arXiv preprint
17
Yaseen, M. (2024), What is YOLOv8: An in-depth exploration of the internal features of the next-generation object detector, arXiv preprint
18
Wang, C.-Y., Liao, H.-Y. M., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W. (2019), CSPNet: A new backbone that can enhance learning capability of CNN, arXiv preprint
19
Henderson, P., Ferrari, V. (2016), End-to-end training of object class detectors for mean average precision, arXiv preprint
20
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A. (2010), The PASCAL Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, 88, 303-338.
21
Zhang, Z. (2000), A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334.