Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Zhang, W., Zhou, T., Wu, P. (2024), Anthropogenic amplification of precipitation variability over the past century, Science, 385(6652), 427-432.DOI
2 
Rose, A., Wei, D., Machado, J., Spencer, K. (2022), Benefit–cost analysis of low-cost flood inundation sensors, Natural Hazards Review, 23(4), 04022037DOI
3 
Wienhold, K. J., Li, D., Li, W., Fang, Z. N. (2023), Flood inundation and depth mapping using unmanned aerial vehicles combined with high-resolution multispectral imagery, Hydrology, 10(8), 158DOI
4 
Tanim, A. H., McRae, C. B., Tavakol-Davani, H., Goharian, E. (2022), Flood detection in urban areas using satellite imagery and machine learning, Water, 12(4), 1140DOI
5 
Van, L. N., Nguyen, G. V., Kim, Y., Do, M. T. T., Kwon, S., Lee, J., Lee, G. (2025), Rapid urban flood detection using PlanetScope imagery and thresholding methods, Water, 17(5), 1005Google Search
6 
Misra, A., White, K., Nsutezo, S. F., Straka, III, W., Lavista, J. (2025), Mapping global floods with 10 years of satellite radar data, Nature Communications, 16, 5762DOI
7 
Fakhri, F., Gkanatsios, I. (2025), Quantitative evaluation of flood extent detection using attention U-Net: Case studies from Eastern South Wales, Australia in March 2021 and July 2022, Scientific Reports, 15, 12377DOI
8 
Woo, H., Choi, H., Kim, M., Noh, S. J. (2024), Estimating urban inundation using physics-informed deep learning: A case study of the Oncheon-cheon catchment, Journal of Korea Water Resources Association, 57(12), 989-1001.DOI
9 
Zhao, J., Wang, X., Zhang, C., Hu, J., Wan, J., Cheng, L., Shi, S., Zhu, X. (2025), Urban waterlogging monitoring and recognition in low-light scenarios using surveillance videos and deep learning, Water, 17(2), 707DOI
10 
Zamanizadeh, M., Cetin, M., Shahabi, A., Tahvildari, N. (2025), Depth estimation in urban flooding using surveillance cameras and high-resolution LiDAR data, Environmental Modelling and Software, 192, 106572DOI
11 
Zhong, P., Liu, Y., Zheng, H., Zhao, J. (2023), Detection of urban flood inundation from traffic images using deep learning methods, Water Resources Management, 38, 287-301.DOI
12 
Goodfellow, I., Bengio, Y., Courville, A. (2016), Deep learningGoogle Search
13 
Lamichhane, B. R., Srijuntongsiri, G., Horanont, T. (2025), CNN based 2D object detection techniques: A review, Frontiers in Computer Science, 6, 1475664DOI
14 
Szeliski, R. (2022), Computer vision: Algorithms and applications (2nd ed.)Google Search
15 
Masoumian, A., Marei, D. G. F., Abdulwahab, S., Cristiano, J., Puig, D., Rashwan, H. A. (2021), Absolute distance prediction based on deep learning object detection and monocular depth estimation, arXiv preprintDOI
16 
Reis, D., Hong, J., Kupec, J., Daoudi, A. (2024), Real-time flying object detection with YOLOv8, arXiv preprintDOI
17 
Yaseen, M. (2024), What is YOLOv8: An in-depth exploration of the internal features of the next-generation object detector, arXiv preprintDOI
18 
Wang, C.-Y., Liao, H.-Y. M., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W. (2019), CSPNet: A new backbone that can enhance learning capability of CNN, arXiv preprintDOI
19 
Henderson, P., Ferrari, V. (2016), End-to-end training of object class detectors for mean average precision, arXiv preprintDOI
20 
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A. (2010), The PASCAL Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, 88, 303-338.DOI
21 
Zhang, Z. (2000), A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334.DOI