JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-12
(Vol.29 No.6)
10.11112/jksmi.2025.29.6.70
Journal XML
XML
PDF
INFO
REF
References
1
Bah, A. S., Zhang, Y., Sasai, K., Conciatori, D., Chouinard, L., Zufferey, N., Power, G. J., Sanchez, T., Chen, X. (2025), Bridge service life and impact of maintenance events on the structural state index, Case Studies in Construction Materials
2
(2024), Road maintenance in Japan
3
Shim, S., Lee, S. W., Cho, G. C., Kim, J., Kang, S. M. (2023), Remote robotic system for 3D measurement of concrete damage in tunnel with ground vehicle and manipulator, Computer‐Aided Civil and Infrastructure Engineering, 38(15), 2180-2201.
4
Odeh, I., Shafei, B. (2025), An Automated Platform to Detect, Assess, and Quantify Deterioration in Concrete Structures, Developments in the Built Environment, 100728
5
Chen, B., Zhang, H., Wang, G., Huo, J., Li, Y., Li, L. (2023), Automatic concrete infrastructure crack semantic segmentation using deep learning, Automation in Construction, 152, 104950
6
Yu, Z., Dai, C., Zeng, X., Lv, Y., Li, H. (2025), A lightweight semantic segmentation method for concrete bridge surface diseases based on improved DeeplabV3+, Scientific Reports, 15(1), 10348
7
Li, S., Zhao, X., Zhou, G. (2019), Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network, Computer‐Aided Civil and Infrastructure Engineering, 34(7), 616-634.
8
Wang, W., Su, C. (2022), Automatic concrete crack segmentation model based on transformer, Automation in Construction, 139, 104275
9
Gan, L., Liu, H., Yan, Y., Chen, A. (2024), Bridge bottom crack detection and modeling based on faster R‐CNN and BIM, IET Image Processing, 18(3), 664-677.
10
Rostami, G., Chen, P. H., Hosseini, M. S. (2025), Segment Any Crack: Deep Semantic Segmentation Adaptation for Crack Detection, arXiv preprint arXiv:2504.14138
11
Xu, J., Yuan, C., Gu, J., Liu, J., An, J., Kong, Q. (2023), Innovative synthetic data augmentation for dam crack detection, segmentation, and quantification, Structural Health Monitoring, 22(4), 2402-2426.
12
Hartmann, C., Klauck, S. (2025), Synthetic training data for crack propagation measurement by neural networks, Neural Computing and Applications, 1-30.
13
Hu, W., Liu, X., Zhou, Z., Wang, W., Wu, Z., Chen, Z. (2025), Robust crack detection in complex slab track scenarios using STC-YOLO and synthetic data with highly simulated modeling, Automation in Construction, 175, 106219
14
Xie, J., Chen, B., Giacomini, A., Guo, H., Iqbal, U., Huang, J. (2025), A versatile synthetic data generation framework for crack detection, Engineering Structures, 344, 121428
15
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B. (2022), High-resolution image synthesis with latent diffusion models, 10684-10695.
16
Bianchi, Eric, Hebdon, Matthew (2021), Concrete Crack Conglomerate Dataset
17
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K. (2023), Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 22500-22510.
18
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S. (2017), Gans trained by a two time-scale update rule converge to a local nash equilibrium, Advances in neural information processing systems, 30
19
Shim, S., Kim, J., Lee, S. W., Cho, G. C. (2022), Road damage detection using super-resolution and semi-supervised learning with generative adversarial network, Automation in Construction, 135, 104139
20
Pan, H., Hong, Y., Sun, W., Jia, Y. (2022), Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes, IEEE Transactions on Intelligent Transportation Systems, 24(3), 3448-3460.
21
Gao, R. (2021), Rethink dilated convolution for real-time semantic segmentation, arXiv preprint arXiv:2111.09957, 2(3), 6
22
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z. (2021), Swin transformer: Hierarchical vision transformer using shifted windows, 10012-10022.
23
Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X. (2022), Metaformer is actually what you need for vision, 10819-10829.