Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Bah, A. S., Zhang, Y., Sasai, K., Conciatori, D., Chouinard, L., Zufferey, N., Power, G. J., Sanchez, T., Chen, X. (2025), Bridge service life and impact of maintenance events on the structural state index, Case Studies in Construction MaterialsDOI
2 
(2024), Road maintenance in JapanURL
3 
Shim, S., Lee, S. W., Cho, G. C., Kim, J., Kang, S. M. (2023), Remote robotic system for 3D measurement of concrete damage in tunnel with ground vehicle and manipulator, Computer‐Aided Civil and Infrastructure Engineering, 38(15), 2180-2201.DOI
4 
Odeh, I., Shafei, B. (2025), An Automated Platform to Detect, Assess, and Quantify Deterioration in Concrete Structures, Developments in the Built Environment, 100728DOI
5 
Chen, B., Zhang, H., Wang, G., Huo, J., Li, Y., Li, L. (2023), Automatic concrete infrastructure crack semantic segmentation using deep learning, Automation in Construction, 152, 104950DOI
6 
Yu, Z., Dai, C., Zeng, X., Lv, Y., Li, H. (2025), A lightweight semantic segmentation method for concrete bridge surface diseases based on improved DeeplabV3+, Scientific Reports, 15(1), 10348DOI
7 
Li, S., Zhao, X., Zhou, G. (2019), Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network, Computer‐Aided Civil and Infrastructure Engineering, 34(7), 616-634.DOI
8 
Wang, W., Su, C. (2022), Automatic concrete crack segmentation model based on transformer, Automation in Construction, 139, 104275DOI
9 
Gan, L., Liu, H., Yan, Y., Chen, A. (2024), Bridge bottom crack detection and modeling based on faster R‐CNN and BIM, IET Image Processing, 18(3), 664-677.DOI
10 
Rostami, G., Chen, P. H., Hosseini, M. S. (2025), Segment Any Crack: Deep Semantic Segmentation Adaptation for Crack Detection, arXiv preprint arXiv:2504.14138DOI
11 
Xu, J., Yuan, C., Gu, J., Liu, J., An, J., Kong, Q. (2023), Innovative synthetic data augmentation for dam crack detection, segmentation, and quantification, Structural Health Monitoring, 22(4), 2402-2426.DOI
12 
Hartmann, C., Klauck, S. (2025), Synthetic training data for crack propagation measurement by neural networks, Neural Computing and Applications, 1-30.DOI
13 
Hu, W., Liu, X., Zhou, Z., Wang, W., Wu, Z., Chen, Z. (2025), Robust crack detection in complex slab track scenarios using STC-YOLO and synthetic data with highly simulated modeling, Automation in Construction, 175, 106219DOI
14 
Xie, J., Chen, B., Giacomini, A., Guo, H., Iqbal, U., Huang, J. (2025), A versatile synthetic data generation framework for crack detection, Engineering Structures, 344, 121428DOI
15 
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B. (2022), High-resolution image synthesis with latent diffusion models, 10684-10695.Google Search
16 
Bianchi, Eric, Hebdon, Matthew (2021), Concrete Crack Conglomerate DatasetDOI
17 
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K. (2023), Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 22500-22510.Google Search
18 
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S. (2017), Gans trained by a two time-scale update rule converge to a local nash equilibrium, Advances in neural information processing systems, 30Google Search
19 
Shim, S., Kim, J., Lee, S. W., Cho, G. C. (2022), Road damage detection using super-resolution and semi-supervised learning with generative adversarial network, Automation in Construction, 135, 104139DOI
20 
Pan, H., Hong, Y., Sun, W., Jia, Y. (2022), Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes, IEEE Transactions on Intelligent Transportation Systems, 24(3), 3448-3460.Google Search
21 
Gao, R. (2021), Rethink dilated convolution for real-time semantic segmentation, arXiv preprint arXiv:2111.09957, 2(3), 6Google Search
22 
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z. (2021), Swin transformer: Hierarchical vision transformer using shifted windows, 10012-10022.Google Search
23 
Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X. (2022), Metaformer is actually what you need for vision, 10819-10829.Google Search