JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-12
(Vol.29 No.6)
10.11112/jksmi.2025.29.6.110
Journal XML
XML
PDF
INFO
REF
References
1
Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W., Serhani, M.A. (2021), Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures, Sensors, 21(5), 1688
2
Altaf, A., Mehmood, A., Filograno, M.L., Alharbi, S., Iqbal, J. (2025), Deployable deep learning models for crack detection: efficieny, interpretability, and severity estimation, Buildings, 15(18), 3362
3
Ding, W., A-Basset, M., Hawash, H., M.Ali, A. (2022), Explainability of artificial interlligence methods, applications and challenges: A comprehensive survey, Information Sciences, 615, 238-292.
4
Dou, Y.T., Dong, G.Q., Li, X. (2024), Automatic identification of GPR targets on roads based on CNN and Grad-CAM, Applied Geophysics, 22, 488-498.
5
Forest, F., Porta, H., Tuia, D., Fink, O. (2024), From classification to segmentation with explainable AI: A study on crack detection and growth monitoring, Automation in Construction, 165, 105497
6
Gipiskis, R., Tsai, C.W., Kurasova, O. (2024), Explainable AI (XAI) in image segmentation in medicine, industry, and beyond: A survey, ICT Express, 10, 1331-1354.
7
Huangfu, Z., Jiao, Y., Wei, F., Shi, G., Dong, H. (2025), A unified approach for weakly supervised crack detection via affine transformation and pseudo label refinement, Scientific Reports, 15, 8673
8
Jeong, H.P., Song, H.M., Choi, Y.C. (2024), Real-time road surface recognition and black ice prevention system for asphalt concrete pavements using image analysis, Journal of the Korea Institute for Structural Maintenance and Inspection, 28(1), 82-89.
9
Kang, W., Li, D.S., Zhang, Y. (2025), Interpretable research on the health monitoring network of prefabricated building beam-column joints, Structural Health Monitoring
10
Kavitha, S., Baskaran, K.R., Dhanapriya, B. (2023), Explainable AI for detecting fissures on concrete surfaces using transfer learning, 376-384.
11
Kim, A.R., Kim, D.H., Byun, Y.S., Lee, S.W. (2018), Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering, Journal of the Korean Geotechnical Society, 34(12), 145-154.
12
Kim, B.H., Cho, S.J., Chae, H.J., Kim, H.K., Kang, J.H. (2021), Development of crack detection system for highway tunnels using imaging device and deep learning, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(4), 65-74.
13
Lee, Y.I., Kim, B.H., Cho, S.J. (2018), Image-based spalling detection of concrete structures using deep learning, Journal of the Korea Concrete Institute, 30(1), 91-99.
14
Liu, C., Xu, B. (2023), Weakly-supervised structural surface crack detection algorithm based on class activation map and superpixel segmentation, Advances in Bridge Engineering, 4, 27
15
Lundberg, S.M., Lee, S.I. (2017), A unified approach interpreting model predictions, 1-10.
16
Ogunjinmi, P.D., Park, S.S., Kim, B.R., Lee, D.E. (2022), Rapid post-earthquake structural damage assessment using convolutional neural networks and transfer learning, Sensors, 22(9), 3471
17
Philip, R.E., Andrushia, A.D., Nammalvar, A., Gurupatham, B.G.A., Roy, K. (2023), A comparative study on crack detection in concrete walls using transfer learning techniques, Journal of Composites Sciences, 7(4), 169
18
Ribeiro, M.T., Singh, S., Guestrin, C. (2016), “Why Should I Trust You?”: Expalining the predictions of any classifier, 1135-1144.
19
Saarela, M., Podgorelec, V. (2024), Recent applications of explainable AI (XAI): A systematic literature review, Applied Sciences, 14(19), 8884
20
Sam Rajadurai, R., Kang, S.T. (2021), Automated vision-based crack detection on concrete surfaces using deep learning, Applied sciences, 11(11), 5229
21
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. (2019), Grad-CAM: Visual explanations from deep networks via gradient-based localization, International Journal of Computer Vision, 128, 336-359.
22
Shomal Zadeh, S., Aalipour birgani, S., Khorshidi, M., Kooban, F. (2023), Concrete surface crack detection with convolutional-based deep learning models, International Journal of Novel Research in Civil Structural and Earth Sciences, 10(3), 25-35.
23
Sohaib, M., Hasan, M.J., Hasan, M.A., Zheng, Z. (2024), A robust self-supervised approach for fine-grained crack detection in concrete structures, Scientific Reports, 14, 12646
24
Swarna, R.A., Hossain, M.M., Khatun, Mst.R., Rahman, M.M., Munir, A. (2024), Concrete crack detection and segregation: A feature fusion, crack isolation, and explainable AI-Based approach, Journal of Imaging, 10(9), 215
25
Wu, J., He, Y., Xu, C., Jia, X., Huang, Y., Chen, Q., Huang, C., Eslamlou, A.D., Huang, S. (2023), Interpretability analysis of convolutional neural networks for crack detection, Buildings, 13(12), 3095
26
Yuan, Q., Shi, Y., Li, M. (2024), A review of computer vision-based crack detection methods in civil infrastructure: progress and challenges, Remote Sensing, 16(16), 2910
27
Zoubir, H., Rguig, M., Aroussi, M.E., Chehri, A., Saadane, R., Jeon, G. (2022), Concrete bridge defects identification and localization based on classification deep convolutional neural networks and transfer learning, Remote Sensing, 14(19), 4882