JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2025-12
(Vol.29 No.6)
10.11112/jksmi.2025.29.6.199
Journal XML
XML
PDF
INFO
REF
References
1
Hwang, J. H., An, S. S. (2008), An Improvement of the State Assessment for Concrete Floor Slab by Damage Type Breakdown, Journal of The Korea Institute for Structural Maintenance and Inspection, 12(2), 139-148.
2
Ha, M. H., Park, J. S. (2010), Estimation of National Loss Expenses to Insufficient Safety Inspection and Precision Safety Diagnosis, Journal of The Korea Institute for Structural Maintenance and Inspection, 14(6), 246-253.
3
Park, J. W. (2021), Introduction to Evaluation System on Facilities Safety Inspection and Flux activity to prevent Bad Safety Inspection for Apartment Buildings, Journal of The Korea Institute for Structural Maintenance and Inspection, 25(4), 64-71.
4
Hwang, S. J., Kim, J. H., Yoon, J. H., Lee, S. H. (2022), A Study on the Problems of Exterior Safety Inspection of Facilities Using Drone, Proceedings of the 2022 Architectural Institute of Korea Fall Conference, 42(2), 658
5
Zhuang, H., Cheng, Y., Zhou, M., Yang, Z. (2025), Deep learning for surface crack detection in civil engineering: A comprehensive review, Measurement, 116908
6
He, K., Zhang, X., Ren, S., Sun, J. (2016), Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
7
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2017), Densely connected convolutional networks, Proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708.
8
Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016), You only look once: Unified, real-time object detection, In Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.
9
Ren, S., He, K., Girshick, R., Sun, J. (2015), Faster r-cnn: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, 28
10
Phung, M., Duong, T. H. D., Quang, P. H. (2019), System architecture for real-time surface inspection using multiple UAVs, IEEE Systems Journal, 14(2), 2925-2936.
11
Jiang, S., Zhang, J. (2020), Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system, Computer-Aided Civil and Infrastructure Engineering, 35, 549-564.
12
Howard, A. G. (2017), Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861
13
Tan, M., Le, Q. (2019), Efficientnet: Rethinking model scaling for convolutional neural networks, In International Conference on Machine Learning, 6105-6114.
14
Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Chen, J. (2024), Detrs beat yolos on real-time object detection, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 16965-16974.
15
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L. (2014), Microsoft coco: Common objects in context, In European Conference on Computer Vision, 740-755.
16
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., Zisserman, A. (2010), The pascal visual object classes (voc) challenge, International journal of computer vision, 88(2), 303-338.
17
Abdel-Qader, I., Abudayyeh, O., Kelly, M. E. (2003), Analysis of edge-detection techniques for crack identification in bridges, Journal of Computing in Civil Engineering, 17(4), 255-263.
18
Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z. (2016), Automatic road crack detection using random structured forests, IEEE Transactions on Intelligent Transportation Systems, 17(12), 3434-3445.
19
Cha, Y. J., Choi, W., Büyüköztürk, O. (2017), Deep learning‐based crack damage detection using convolutional neural networks, Computer‐Aided Civil and Infrastructure Engineering, 32(5), 361-378.
20
Philip, R. E., Andrushia, A. D., Nammalvar, A., Gurupatham, B. G. A., Roy, K. (2023), A comparative study on crack detection in concrete walls using transfer learning techniques, Journal of Composites Science, 7(4), 169
21
Golding, V. P., Gharineiat, Z., Munawar, H. S., Ullah, F. (2022), Crack detection in concrete structures using deep learning, Sustainability, 14(13), 8117
22
Ali, L. (2021), Performance evaluation of deep cnn-based crack detection and localization techniques for concrete structures, Sensors, 21, 1688
23
Sekar, A., Perumal, V. (2021), Automatic road crack detection and classification using multi-tasking faster RCNN, Journal of Intelligent & Fuzzy Systems, 41(6), 6615-6628.
24
Yu, Z., Shen, Y., Shen, C. (2021), A real-time detection approach for bridge cracks based on YOLOv4-FPM, Automation in Construction, 122, 103514
25
Shahin, M., Chen, F. F., Maghanaki, M., Hosseinzadeh, A., Zand, N., Khodadadi Koodiani, H. (2024), Improving the concrete crack detection process via a hybrid visual transformer algorithm, Sensors, 24(10), 3247
26
(2023), Public crack detection dataset, Roboflow