The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Abbaspour K., Yang J., Maximov I., Siber R., Bogner K, Mieleitner J., Srinivasan R, 2007, Modelling hydrology and water quality in the pre-Alpine/Alpine thur watershed using SWAT, Journal of Hydrology, Vol. 333, pp. 413-430Google Search
2 
Bergström S, 1976, Development and application of a conceptual runoff model for Scandinavian catchments, SMHI Report RHO 7, Norrköping, Vol. 134Google Search
3 
Bernardo J., Smith A, 1994, Bayesian Theory, Wiley Chichester
4 
Beven K, 2019, Validation and Equifinality, Computer Simulation Validation. Simulation Foundations, Methods and Applications, Springer
5 
Beven K., Binley A, 1992, The future of distributed models: model calibration and uncertainty prediction, Hydrological Process, Vol. 6, pp. 279-298Google Search
6 
Campbell E., Fox D., Bates B, 1999, A Bayesian approach to parameter estimation and pooling in nonlinear flood event models, Water Resources Research, Vol. 35, pp. 211-220Google Search
7 
Franks S., Gineste P., Beven K., Merot P, 1998, On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process, Water Resources Research, Vol. 34, pp. 787-797Google Search
8 
Gelman A, 1995, Inference and monitoring convergence, Markov Chain Monte Carlo in Practice, Chapman & Hall, pp. 131-142Google Search
9 
Geyer C, 1992, Practical Markov chain Monte Carlol, Statistical Science, Vol. 7, pp. 473-511Google Search
10 
Gilks W., Richardson S., Spiegelhalter D, 1995, Introducing Markov Chain Monte Carlo, Markov Chain Monte Carlo in Practice, Chapman & Hall, pp. 1-18
11 
Harmon R., Challenor P, 1997, A Markov chain Monte Carlo method for estimation and assimilation into models, Ecological Modeling, Vol. 101, pp. 41-59Google Search
12 
Hastings W, 1970, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, Vol. 57, pp. 97-109Google Search
13 
Joh H., Park J., Jang C., Kim S, 2012, Comparing prediction uncertainty analysis techniques of SWAT simulated streamflow applied to Chungju dam watershed, [Korean Literature], Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 861-874Google Search
14 
Kagabu M., Ide K., Hosono T, Nakagawa K., Shimada J, 2020, Describing coseismic groundwater level rise using tank model in volcanic aquifers, Kumamoto, southern Japan, https://doi.org/10.1016/j.jhydrol.2019.124464, Journal of Hydrology, Vol. 582, pp. 124464Google Search
15 
Kim B., Kim S., Lee E., Kim H, 2007, Methodology for estimating ranges of SWAT model parameters: Application of Imha lake inflow and suspended sediments, [Korean Literature], Korean Society of Civil Engineers Magazine, Vol. 27, No. B, pp. 661-668Google Search
16 
Kim J., Kim S, 2007, Flow duration curve analysis for Nakdong river basin using TMDL flow data, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 23, No. 3, pp. 332-338Google Search
17 
Kim M., Heo T., Chung S, 2013, Uncertainty analysis on the simulations of runoff and sediment using SWAT-CUP, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 29, No. 5, pp. 681-690Google Search
18 
Kim M., Ko I., Kim S, 2009, An analysis of the effect of climate change on Nakdong river flow condition using CGCM's future climate information, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 25, No. 6, pp. 863-871Google Search
19 
Kim S., Kang D., Kim M., Shin H, 2007, The possibility of daily flow data generation from 8-day intervals measured flow data for calibrating watershed model, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 23, No. 1, pp. 64-71Google Search
20 
Kim S., Lee K., Kim H, 2005, Low flow estimation for river water quality models using a long-term runoff hydrologic model, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 21, No. 6, pp. 575-583Google Search
21 
Korea Meteorological Administration (KMA), 2020, https://data.kma.go.kr/cmmn/main.do (accessed May. 2020)., Open Weather data portal
22 
Lee A., Kim S, 2011, An analysis of the effect of climate change on Nakdong river environmental flow, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 27, No. 3, pp. 273-285Google Search
23 
Lee A., Cho S., Kang D. K., Kim S, 2014, Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration, Journal of Hydro-environmental Research, Vol. 8, pp. 234-247Google Search
24 
Lee A., Cho S., Park M. J., Kim S, 2013, Determination of standard target water quality in the Nakdong river basin for the total maximum daily load management system in Korea, KSCE Journal of Civil Engineering, Vol. 17, pp. 309-319Google Search
25 
Lee J., Kim J., Lee J., Kang I., Kim S, 2012, Current status of refractory dissolved organic carbon in the Nakdong river basin, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 28, No. 4, pp. 538-550Google Search
26 
Lee J., Kim U., Kim L. H., Kim E. S., Kim S, 2019, Management of organic matter in watersheds with insufficient observation data: the Nakdong river basin, doi: http://dx.doi.org/10.5004/dwt.2019.24021, Desalination and Water Treatment, Vol. 152, No. 2019, pp. 44-57Google Search
27 
Makowski D., Wallach D., Tremblay M, 2002, Using a Bayesian approach to paramter estimation; Comparison of the GLUE and MCMC methods, Agronomie, Vol. 22, pp. 91-203Google Search
28 
Malakoff D, 1999, Bayes offers a ‘New’ way to make sense of numbers, Science, Vol. 286, pp. 1460-1464Google Search
29 
Mckay M., Baekman R., Conover W, 1979, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, Vol. 21, No. 2, pp. 239-245Google Search
30 
Metropolis N., Rosenbluth A., Rosenbluth M., Teller A H, 1953, Equation of state calculations by fast computing machines, Journal of Chemical Physics, Vol. 21, pp. 1087-1091Google Search
31 
Ministry of Environment (ME), 2020, http://water.nier.go.kr/publicMain/mainContent.do (accessed May. 2020)., Water Environment Information System (WEIS)
32 
Parajka J., Merz R., Blöschl G, 2005, A comparison of regionalisation methods for catchment model parameters, Hydrology and Earth System Sciences, Vol. 9, pp. 157-171Google Search
33 
Perrin C., Michel C., Andréassian V, 2003, Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, Vol. 279, pp. 275-289Google Search
34 
Pushpalatha R., Perrin C., Le Moine N., Mathevet T., Andréassian V, 2011, A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, Vol. 411, No. 1-2, pp. 66-76Google Search
35 
Raftery A., Lewis S, 1995, Implementing MCMC, Markov Chain Monte Carlo in Practice, Chapman & Hall, pp. 115-130
36 
Rajib M., Merwade V., Yu Z, 2016, Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture, Journal of Hydrology, Vol. 536, pp. 192-207Google Search
37 
Ryu J., Kang H., Choi J., Kong D., Gum D., Jang C., Lim K, 2012, Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed, [Korean Literature], Journal of Korean Society on Water Environment, Vol. 28, No. 3, pp. 347-358Google Search
38 
Shulz K., Beven K., Huwe B., 1999, Equifinality and the problem of robust calibration in nitrogen budget simulations, Soil Science Society of America Journal, Vol. 63, pp. 1934-1941Google Search
39 
Sugawara M, 1979, Automatic calibration of the tank model, Hydrological Sciences Bulletin, Vol. 24, No. 3, pp. 375-388Google Search
40 
Sun M., Zhang X., Huo Z., Feng S., Huang G., Mao X, 2016, Uncertainty and sensitivity assessment of an agricultural-hydrological model, Journal of Hydrology, Vol. 534, pp. 19-30Google Search
41 
Wallach D, 1995, Regional optimization of fertilization using a hierarchical linear model, Biometrics, Vol. 51, pp. 338-346Google Search