The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Asakura Y., Nishida T., Matsuoka T., Koda S., 2008, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrasonics Sonochemistry, Vol. 15, pp. 244-250DOI
2 
Beckett M. A., Hua I., 2001, Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry, Journal of Physical Chemistry A, Vol. 105, pp. 3796-3802DOI
3 
Chaplin B. P., 2014, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environmental Science: Processes & Impacts, Vol. 16, pp. 1182-1203DOI
4 
Chiemi H., Daisuke K., Hideyuki M., Tomoki T., Chiaki K., Katsuto O., Atsushi S., 2013, Effect of particle addition on degradation rate of methylene blue in an ultrasonic field, Japanese Journal of Applied Physics, Vol. 52, pp. 07HE11DOI
5 
Choi J., Khim J., Neppolian B., Son Y., 2019, Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor, Ultrasonics Sonochemistry, Vol. 51, pp. 412-418DOI
6 
Choi J., Lee H., Son Y., 2021, Effects of gas sparging and mechanical mixing on sonochemical oxidation activity, Ultrasonics Sonochemistry, Vol. 70, pp. 105334DOI
7 
Haynes W. M., Lide D. R., Bruno T. J., 2016, CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data, 2016-2017, CRC PressGoogle Search
8 
Johansson L., Singh T., Leong T., Mawson R., McArthur S., Manasseh R., Juliano P., 2016, Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems – In situ gentle cavitation threshold determination and free radical related oxidation, Ultrasonics Sonochemistry, Vol. 28, pp. 346-356DOI
9 
Kojima Y., Asakura Y., Sugiyama G., Koda S., 2010, The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor, Ultrasonics Sonochemistry, Vol. 17, pp. 978-984DOI
10 
Mahamuni N. N., Adewuyi Y. G., 2010, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation, Ultrasonics Sonochemistry, Vol. 17, pp. 990-1003DOI
11 
Mason T. J., 2007, Sonochemistry and the environment – Providing a “green” link between chemistry, physics and engineering, Ultrasonics Sonochemistry, Vol. 14, pp. 476-483DOI
12 
Merouani S., Hamdaoui O., Rezgui Y., Guemini M., 2015, Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases, Ultrasonics Sonochemistry, Vol. 22, pp. 41-50DOI
13 
Miklos D. B., Remy C., Jekel M., Linden K. G., Drewes J. E., Hübner U., 2018, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Research, Vol. 139, pp. 118-131DOI
14 
Okitsu K., Suzuki T., Takenaka N., Bandow H., Nishimura R., Maeda Y., 2006, Acoustic multibubble cavitation in water; A new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry, The Journal of Physical Chemistry B, Vol. 110, pp. 20081-20084DOI
15 
Pétrier C., Combet E., Mason T., 2007, Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds, Ultrasonics Sonochemistry, Vol. 14, pp. 117-121DOI
16 
Rao Y., Yang H., Xue D., Guo Y., Qi F., Ma J., 2016, Sonolytic and sonophotolytic degradation of Carbamazepine: Kinetic and mechanisms, Ultrasonics Sonochemistry, Vol. 32, pp. 371-379DOI
17 
Rayaroth M. P., Aravindakumar C. T., Shah N. S., Boczkaj G., 2022, Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review, Chemical Engineering Journal, Vol. 430, pp. 133002DOI
18 
Rooze J., Rebrov E. V., Schouten J. C., Keurentjes J. T. F., 2013, Dissolved gas and ultrasonic cavitation – A review, Ultrasonics Sonochemistry, Vol. 20, pp. 1-11DOI
19 
Son Y., 2017, Simple design strategy for bath-type high-frequency sonoreactors, Chemical Engineering Journal, Vol. 328, pp. 654-664DOI
20 
Son Y., Lee D., Lee W., Park J., Hyoung Lee W., Ashokkumar M., 2019, Cavitational activity in heterogeneous systems containing fine particles, Ultrasonics Sonochemistry, Vol. 58, pp. 104599DOI
21 
Son Y., Lim M., Ashokkumar M., Khim J., 2011, Geometric optimization of sonoreactors for the enhancement of sonochemical activity, The Journal of Physical Chemistry C, Vol. 115, pp. 4096-4103DOI
22 
Son Y., Lim M., Khim J., 2009, Investigation of acoustic cavitation energy in a large-scale sonoreactor, Ultrasonics Sonochemistry, Vol. 16, pp. 552-556DOI
23 
Sutkar V. S., Gogate P. R., 2009, Design aspects of sonochemical reactors: Techniques for understanding cavitational activity distribution and effect of operating parameters, Chemical Engineering Journal, Vol. 155, pp. 26-36DOI
24 
Wood R. J., Lee J., Bussemaker M. J., 2017, A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions, Ultrasonics Sonochemistry, Vol. 38, pp. 351-370DOI