The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Adriaenssens E. M., Farkas K., Harrison C., Jones D. L., Allison H. E., McCarthy A. J., 2018, Viromic analysis of wastewater input to a river catchment reveals a diverse assemblage of RNA viruses, mSystems, Vol. 3, No. 3, pp. e00025-18DOI
2 
Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J. W., Choi P. M., Kitajima M., Simpson S. L., Li J., Tscharke B., Verhagen R., Smith W. J. M., Zaugg J., Dierens L., Hugenholtz P., Thomas K. V., Mueller J. F., 2020, First confirmed detection of SARSCoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community, Science of the Total Environment, Vol. 728, pp. 138764Google Search
3 
Ahmed W., Bertsch P. M., Bivins A., Bibby K., Farkas K., Gathercole A., Haramoto E., Gyawali P., Korajkic A., McMinn B. R., Mueller J. F., Simpson S. L., Smith W. J. M., Symonds E. M., Thomas K. V., Verhagen R., Kitajima M., 2020, Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater, Science of the Total Environment, Vol. 739, pp. 139960DOI
4 
Ahmed W., Bivins A., Bertsch P. M., Bibby K., Choi P. M., Farkas K., Gyawali P., Hamilton K. A., Haramoto E., Kitajima M., Simpson S. L., Tandukar S., Thomas K., Mueller J. F., 2020, Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimisation and quality control are crucial for generating reliable public health information, Current Opinion in Environmental Science & Health, Vol. 17, pp. 82-93DOI
5 
Ahmed W., Simpson S. L., Bertsch P. M., Bibby K., Bivins A., Blackall L. L., Bofill-Mas S., Bosch A., Brandão J., Choi P. M., Ciesielski M., Donner E., D’Souza N., Farnleitner A. H., Gerrity D., Gonzalez R., Griffith J. F., Gyawali P., Haas C. N., Hamilton K. A., Shanks O. C., 2022, Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance, Science of the Total Environment, Vol. 805, pp. 149877Google Search
6 
Ahmed W., Smith W. J. M., Metcalfe S., Jackson G., Choi P. M., Morrison M., Field D., Gyawali P., Bivins A., Bibby K., Simpson S. L., 2022, Comparison of RT-qPCR and RT-dPCR Platforms for the trace detection of SARS-CoV-2 RNA in wastewater, ACS ES&T Water, Vol. 2, No. 11, pp. 1871-1880DOI
7 
Ahn S. J., Baek Y. H., Lloren K. K. S., Choi W. S., Jeong J. H., Antigua K. J. C., Kwon H. I., Park S. J., Kim E. H., Kim Y. I., Si Y. J., Hong S. B., Shin K. S., Chun S., Choi Y. K., Song M. S., 2019, Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform, BMC Infectious Diseases, Vol. 19, No. 1, pp. 676DOI
8 
Alexander M. R., Rootes C. L., van Vuren P. J., Stewart C. R., 2020, Concentration of infectious SARS-CoV-2 by polyethylene glycol precipitation, Journal of Virological Methods, Vol. 286, pp. 113977DOI
9 
Amaral C., Antunes W., Moe E., Duarte A. G., Lima L. M. P., Santos C., Gomes I. L., Afonso G. S., Vieira R., Teles H. S. S., Reis M. S., Ramalho da Silva M. A., Henriques A. M., Fevereiro M., Ventura M. R., Serrano M., Pimentel C., 2021, A molecular test based on RT‑LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples, Scientific Reports, Vol. 11, No. 1, pp. 16430DOI
10 
Amdiouni H., Maunula L., Hajjami K., Faouzi A., Soukri A., Nourlil J., 2012, Recovery comparison of two virus concentration methods from wastewater using cell culture and real-time PCR, Current Microbiology, Vol. 65, No. 40, pp. 432-437DOI
11 
Amoah D.I., Mthethwa P. N., Pillay L., Deepnarain N., Pillay K., Awolusi O. O., Kumari S., Bux F., 2021, RT‑LAMP: A cheaper, simpler and faster alternative for the detection of SARS-CoV-2 in wastewater, Food and Environmental Virology, Vol. 13, No. 4, pp. 447-456DOI
12 
Anahtar M. N., McGrath G. E. G., Rabe B. A., Tanner N. A., White B. A., Lennerz J. K. M., Branda J. A., Cepko C. L., Rosenberg E. S., 2020, Clinical assessment and validation of a rapid and sensitive SARS-CoV-2 test using reverse-transcription loop-mediated isothermal amplification without the need for RNA Extraction, Open Forum Infectious Diseases, Vol. 8, No. 2, pp. ofaa631DOI
13 
Ando H., Iwamoto R., Kobayashi H., Okabe S., Kitajima M., 2022, The efficient and practical virus identification system with enhanced sensitivity for solids (EPISENS-S): A rapid and cost-effective SARS-CoV-2 RNA detection method for routine wastewater surveillance, Science of The Total Environment, Vol. 843, pp. 157101DOI
14 
Artika I. M., Wiyatno A., Ma’roef C. N., 2020, Pathogenic viruses: Molecular detection and characterization, Infection, Genetics and Evolution, Vol. 81, pp. 104215Google Search
15 
Asghar H., Diop O. M., Weldegebriel G., Malik F., Shetty S., El Bassioni L., Akande A. O., Al Maamoun E., Zaidi S., Adeniji A. J., Burns C. C., Deshpande J., Oberste M. S., Lowther S. A., 2014, Environmental surveillance for polioviruses in the global polio eradication initiative, The Journal of Infectious Diseases, Vol. 210, pp. S294-S303DOI
16 
Assis A. S. F., Fumian T. M., Miagostovich M. P., Drumond B. P., da Rosa E Silva M. L., 2018, Adenovirus and rotavirus recovery from a treated effluent through an optimized skimmed-milk flocculation method, Environmental Science and Pollution Research International, Vol. 25, No. 17, pp. 17025-17032DOI
17 
Atha D. H., Ingham K. C., 1981, Mechanism of precipitation of proteins by polyethylene glycols. analysis in terms of excluded volume, Journal of Biological Chemistry, Vol. 256, pp. 12108-12117DOI
18 
Barbosa C., Nogueira S., Gadanho M., Chaves S., 2016, Chapter7-DNA extraction: finding the most suitable method, Molecular Microbial Diagnostic Methods, Elsevier, pp. 135-154DOI
19 
Bar-Or I., Yaniv K., Shagan M., Ozer E., Erster O., Mendelson E., Mannasse B., Shirazi R., Kramarsky-Winter E., Nir O., Abu-Ali H., Ronen Z., Rinott E., Lewis Y., Friedler E. F., Paitan Y., Bitkover E., Berchenko Y., Kushmaro A., 2020, Regressing SARSCoV-2 sewage measurements onto COVID-19 burden in the population: A proof-of-concept for quantitative environmental surveillance, 2020.04.26.20073569, medRxivDOI
20 
Barril P. A., Pianciola L. A., Mazzeo M., Ousset M. J., Jaureguiberry M. V., Alessandrello M., Sánchez G., Oteiza J. M., 2021, Evaluation of viral concentration methods for SARS- CoV-2 recovery from wastewaters, Science of the Total Environment, Vol. 756, pp. 144105DOI
21 
Beattie R. E., Blackwood A. D., Clerkin T., Dinga C., Noble R. T., 2022, Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater, PLoS ONE, Vol. 17, No. 6, pp. e0270659DOI
22 
Becker M. G., Taylor T., Kiazyk S., Cabiles D. R., Meyers A. F. A., Sandstrom P. A., 2020, Recommendations for sample pooling on the Cepheid GeneXpert® system using the Cepheid Xpert® Xpress SARS-CoV-2 assay, PLoS ONE, Vol. 15, No. 11, pp. e0241959DOI
23 
Bertrand I., Challant J., Jeulin H., Hartard C., Mathieu L., Lopez S., Schvoerer E., Courtois S., Gantzer C., Scientific Interest Group Obépine, 2021, Epidemiological surveillance of SARS-CoV-2 by genome quantification in wastewater applied to a city in the northeast of France: Comparison of ultrafiltration-and protein precipitation-based methods, International Journal of Hygiene and Environmental Health, Vol. 233, pp. 113692DOI
24 
Bhadra S., Jiang Y. S., Kumar M. R., Johnson R. F., Hensley L. E., Ellington A. D., 2015, Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV), PLoS ONE, Vol. 10, pp. e0123126DOI
25 
Boonham N., Kreuze J., Winter S., van der Vlugt R., Bergervoet J., Tomlinson J., Mumford R., 2014, Methods in virus diagnostics: from ELISA to next generation sequencing, Virus Research, Vol. 186, pp. 20-31DOI
26 
Buck M. D., Poirier E. Z., Cardoso A., Frederico B., Canton J., Barrell S., Beale R. C., Byrne R., Caidan S., Crawford M., Cubitt L., Gandhi S., Goldstone R. L., Grant P. R., Gulati K., Hindmarsh S., Howell M., Hubank M., Instrell R., Jiang M., Kassiotis G., Lu W., MacRae J. I., 2020, Standard operating procedures for SARS-CoV-2 detection by a clinical diagnostic RT-LAMP assay, 2020.06.29.20142430, medRxivGoogle Search
27 
Butler D. J., Mozsary C., Meydan C., Danko D., Foox J., Rosiene J., Shaiber A., Afshinnekoo E., MacKay M., Sedlazeck F. J., Ivanov N. A., Sierra M., Pohle D., Zietz M., Gisladottir U., Ramlall V., Westover C. D., Ryon K., Young B., Bhattacharya C., Mason C. E., 2020, Shotgun transcriptome and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions, 2020.04.20. 048066, bioRxivGoogle Search
28 
Butler J. M., 2010, Chapter 5-DNA extraction, fundamentals of forensic typing, Elsevier, pp. 99-109DOI
29 
Calgua B., Mengewein A., Grunert A., Bofill-Mas S., Clemente-Casares P., Hundesa A., Wyn-Jones A. P., López-Pila J. M., Girnones R., 2008, Development and application of a one-step low-cost procedure to concentrate viruses from seawater samples, Journal of Virological Methods, Vol. 153, No. 2, pp. 79-83DOI
30 
Calgua B., Rodriguez-Manzano J., Hundesa A., Suñen E., Calvo M., Bofill-Mas S., Girones R., 2013, New methods for the concentration of viruses from urban sewage using quantitative PCR, Journal of Virological Methods, Vol. 187, No. 2, pp. 215-221DOI
31 
Cao Y., Griffith J. F., Dorevitch S., Weisberg S. B., 2012, Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters, Journal of Applied Microbiology, Vol. 113, No. 1, pp. 66-75DOI
32 
Carrillo-Reyes J., Barragán-Trinidad M., Buitrón G., 2021, Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in Mexico, Journal of Water Process Engineering, Vol. 40, pp. 101815DOI
33 
Chavarria-Miró G., Anfruns-Estrada E., Martínez-Velázquez A., Vázquez-Portero M., Guix S., Paraira M., Galofré B., Sánchez G., Pintó R. M., Bosch A., 2021, Time- evolution of SARS-CoV-2 in wastewater during the first pandemic wave of COVID- 19 in the metropolitan area of Barcelona, Applied and Environmental Microbiology, Vol. 87, No. 7, pp. e02750-20DOI
34 
Ciesielski M., Blackwood D., Clerkin T., Gonzalez R., Thompson H., Larson A., Noble R., 2021, Assessing sensitivity and reproducibility of RT-dd PCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater, Journal of Virological Methods, Vol. 297, pp. 114230DOI
35 
Cox K. L., Devanarayan V., Kriauciunas A., Manetta J., Montrose C., Sittampalam S., 2012, Immunoassay Methods, Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD)Google Search
36 
D’Aoust P. M., Mercier E., Montpetit D., Jia J. J., Alexandrov I., Neault N., Baig A. T., Mayne J., Zhang X., Alain T., Langlois M. A., Servos M. R., MacKenzie M., Figeys D., MacKenzie A. E., Graber T. E., Delatolla R., 2021, Quantitative analysis of SARS- CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence, Water Research, Vol. 188, pp. 116560Google Search
37 
Daigle J., Racher K., Hazenberg J., Yeoman A., Hannah H., Duong D., Mohammed U., Spreitzer D., Gregorchuk B. S. J., Head B. M., Meyers A. F. A., Sandstrom P. A., Nichani A., Brooks J. I., Mulvey M. R., Mangat C. S., Becker M. G., 2022, A sensitive and rapid wastewater test for SARS-COV-2 and its use for the early detection of a cluster of cases in a remote community, Applied and environmental microbiology, Vol. 88, No. 5, pp. e0174021DOI
38 
Dao Thi V. L., Herbst K., Boerner K., Meurer M., Kremer L. P., Kirrmaier D., Freistaedter A., Papagiannidis D., Galmozzi C., Stanifer M. L., Boulant S., Klein S., Chlanda P., Khalid D., Barreto Miranda I., Schnitzler P., Kräusslich H. G., Knop M., Anders S., 2020, A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples, Science Translational Medicine, Vol. 12, No. 556, pp. eabc7075DOI
39 
Dhama K., Karthik K., Chakraborty S., Tiwari R., Kapoor S., Kumar A., Thomas P., 2014, Loop mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human pathogens: A review, Pakistan Journal of Biological Sciences: PJBS, Vol. 17, No. 2, pp. 151-166DOI
40 
Di Bonito P., Iaconelli M., Gheit T., Tommasino M., Della Libera S., Bonadonna L., La Rosa G., 2017, Detection of oncogenic viruses in water environments by a Luminex-based multiplex platform for high throughput screening of infectious agents, Water Research, Vol. 123, pp. 549-555DOI
41 
Dundas N., Leos N. K., Mitui M., Revell P., Rogers B. B., 2008, Comparison of automated nucleic acid extraction methods with manual extraction, The Journal of Molecular Diagnostics: JMD, Vol. 10, No. 4, pp. 311-316DOI
42 
Fernández-de-Mera I. G., Rodríguez Del-Río F. J., de la Fuente J., Pérez-Sancho M., Hervás D., Moreno I., Domínguez M., Domínguez L., Gortazar C., 2021, Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in Spain, Transboundary and Emerging Diseases, Vol. 68, No. 3, pp. 1487-1492DOI
43 
Fischbach J., Xander N. C., Frohme M., Glokler J. F., 2015, Shining a light on LAMP assays - A comparison of LAMP visualization methods including the novel use of berberine, BioTechniques, Vol. 58, No. 4, pp. 189-194DOI
44 
Gan S. D., Patel K. R., 2013, Enzyme immunoassay and enzyme-linked immunosorbent assay, The Journal of investigative dermatology, Vol. 133, No. 9, pp. e12DOI
45 
Gerrity D., Papp K., Stoker M., Sims A., Frehner W., 2021, Early pandemic wastewater surveillance of SARS-CoV-2 in southern Nevada: Methodology, occurrence, and inci- dence/prevalence considerations, Water research X, Vol. 10, pp. 100086DOI
46 
Gibas C., Lambirth K., Mittal N., Juel M. A. I., Barua V. B., Roppolo Brazell L., Hinton K., Lontai J., Stark N., Young I., Quach C., Russ M., Kauer J., Nicolosi B., Chen D., Akella S., Tang W., Schlueter J., Munir M., 2021, Implementing building-level SARS-CoV-2 wastewater surveillance on a university campus, Science of the Total Environment, Vol. 782, pp. 146749DOI
47 
Goto M., Honda E., Ogura A., Nomoto A., Hanaki K., 2009, Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue, Biotechniques, Vol. 46, pp. 167-172DOI
48 
Graham K. E., Loeb S. K., Wolfe M. K., Catoe D., Sinnott-Armstrong N., Kim S., Yamahara K. M., Sassoubre L. M., Mendoza Grijalva L. M., Roldan-Hernandez L., Langenfeld K., Wigginton K. R., Boehm A. B., 2021, SARS-CoV-2 RNA in wastewater dettled dolids is associated with COVID-19 cases in a large urban sewershed, Environmental Science & Technology, Vol. 55, No. 1, pp. 488-498DOI
49 
Guttman B., 2013, Virus. Brenner’s Encyclopedia of Genetics, Elsevier, pp. 291-294DOI
50 
Haramoto E., Kitajima M., Hata A., Torrey J. R., Masago Y., Sano D., Katayama H., 2018, A review on recent progress in the detection methods and prevalence of human enteric viruses in water, Water Research, Vol. 135, pp. 168-186DOI
51 
Haramoto E., Malla B., Thakali O., Kitajima M., 2020, First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan, The Science of the Total environmental biology, Vol. 737, pp. 140405DOI
52 
Hata A., Hara-Yamamura H., Meuchi Y., Imai S., Honda R., 2021, Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak, The Science of the Total Environment, Vol. 758, pp. 143578DOI
53 
Hellmer M., Paxeus N., Magnius L., Enache L., Arnholm B., Johansson A., Bergstrom T., Norder H., 2014, Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks, Applied and Environmental Microbiology, Vol. 80, No. 21, pp. 6771-6781DOI
54 
Hong T. C., Mai Q. L., Cuong D. V., Parida M., Minekawa H., Notomi T., Hasebe F., Morita K., 2004, Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus, Journal of Clinical Microbiology, Vol. 42, No. 5, pp. 1956-1961DOI
55 
Hsieh K., Mage P. L., Csordas A. T., Eisenstein M., Soh H. T., 2014, Simultaneous elimination of carryover contamination and detection of DNA with uracil- DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP), Chemical Communications, Vol. 50, pp. 3747-3749DOI
56 
Huang W. E., Lim B., Hsu C. C., Xiong D., Wu W., Yu Y., Jia H., Wang Y., Zeng Y., Ji M., Chang H., Zhang X., Wang H., Cui Z., 2020, RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2, Microbial Biotechnology, Vol. 13, No. 4, pp. 950-961DOI
57 
Ibrahim C., Hammami S., Mejri S., Mehri I., Pothier P., Hassen A., 2017, Detection of Aichi virus genotype B in two lines of wastewater treatment processes, Microbial Pathogenesis, Vol. 109, pp. 305-312DOI
58 
Ibrahim N., Jamaluddin N. D., Tan L. L., Mohd Yusof N. Y., 2021, A review on the development of gold and silver nanoparticles-dased biosensor as a detection strategy of emerging and pathogenic RNA virus, Sensors (Basel, Switzerland), Vol. 21, No. 15, pp. 5114DOI
59 
Islam G., Gedge A., Lara-Jacobo L., Kirkwood A., Simmons D., Desaulniers J. P., 2022, Pasteurization, storage conditions and viral concentration methods influence RT-qPCR detection of SARS-CoV-2 RNA in wastewater, Science of the Total Environment, Vol. 821, pp. 153228DOI
60 
Jayawardena S., Cheung C. Y., Barr I., Chan K. H., Chen H., Guan Y., Peiris J. S., Poon L. L., 2007, Loop-mediated isothermal amplification for influenza A (H5N1) virus, Emerging Infectious Diseases, Vol. 13, No. 6, pp. 899-901DOI
61 
Johnson G., Zubrzycki A., Henry M., Ranadheera C., Corbett C., Meyers A. F. A., Sandstrom P. A., Becker M. G., 2021, Clinical evaluation of the GeneXpert® Xpert® Xpress SARS-CoV-2/Flu/RSV combination test, Journal of Clinical Virology Plus, Vol. 1, No. 1, pp. 100014DOI
62 
Katsarou K., Bardani E., Kallemi P., Kalantidis K., 2019, Viral detection: Past, present, and future, BioEssays, Vol. 41, No. 10, pp. e1900049DOI
63 
Kellner M. J., Ross J. J., Schnabl J., Dekens M. P. S., Matl M., Heinen R., Grishkovskaya I., Bauer B., Stadlmann J., Menéndez-Arias L., Straw A. D., Fritsche-Polanz R., Traugott M., Seitz T., Zoufaly A., Födinger M., Wenisch C., Zuber J., Pauli A., Brennecke J., 2020, A rapid, highly sensitive and open-access SARS-CoV-2 detection assay for laboratory and home testing, Frontiers in Molecular Biosciences, Vol. 9, pp. 801309DOI
64 
Kim S., Kennedy L. C., Wolfe M. K., Criddle C. S., Duong D. H., Topol A., White B. J., Kantor R. S., Nelson K. L., Steele J. A., Langlois K., Griffith J. F., Zimmer-Faust A. G., McLellan S. L., Schussman M. K., Ammerman M., Wigginton K. R., Bakker K. M., Boehm A. B., 2022, SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works, Environmental Science: Water Research & Technology, Vol. 8, pp. 757-770DOI
65 
Kitajima M., Sassi H. P., Torrey J., 2018, Pepper mild mottle virus as a water quality indicator, npj Clean Water, Vol. 1, pp. 1-9DOI
66 
Kocamemi B. A., Kurt H., Hacıoglu S., Yaralı C., Saatci A. M., Pakdemirli B., 2020, First dataset on SARS-CoV-2 detection for Istanbul wastewaters in Turkey, 2020.05.03.20089417, medRxivDOI
67 
Kojabad A. A., Farzanehpour M., Galeh H. E. G., Dorostkar R., Jafarpour A., Bolandian M., Nodooshan M. M., 2021, Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives, Journal of Medical Virology, Vol. 93, No. 7, pp. 4182-4197DOI
68 
Kumar M., Patel A. K., Shah A. V., Raval J., Rajpara N., Joshi M., Joshi C. J., 2020, First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2, Science of the Total Environment, Vol. 746, pp. 141326DOI
69 
Kumar R., Singh R., Hui D., Feo L., Fraternali F., 2018, Graphene as biomedical sensing element: State of art review and potential engineering applications, Composites Part B: Engineering, Vol. 134, pp. 193-206DOI
70 
La Rosa G., Iaconelli M., Mancini P., Bonanno Ferraro G., Veneri C., Bonadonna L., Lucentini L., Suffredini E., 2020, First detection of SARS-CoV-2 in untreated wastewaters in Italy, Science of the Total Environment, Vol. 736, pp. 139652DOI
71 
Lamb L. E., Bartolone S. N., Ward E., Chancellor M. B., 2020, Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification, PLoS One, Vol. 15, No. 6, pp. e0234682DOI
72 
Larsen D. A., Wigginton K. R., 2020, Tracking COVID-19 with wastewater, Nature Biotechnology, Vol. 38, No. 10, pp. 1151-1153DOI
73 
LaTurner Z. W., Zong D. M., Kalvapalle P., Gamas K. R., Terwilliger A., Crosby T., Ali P., Avadhanula V., Santos H. H., Weesner K., Hopkins L., Piedra P. A., Maresso A. W., Stadler L. B., 2021, Evaluating recovery, cost, and throughput of different concentration methods for SARS-CoV-2 wastewater-based epidemiology, Water Research, Vol. 197, pp. 117043DOI
74 
Lee S. H., Baek Y. H., Kim Y. H., Choi Y. K., Song M. S., Ahn J. Y., 2017, One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV, Frontiers in microbiology, Vol. 7, pp. 2166DOI
75 
Lewis G. D., Metcalf T. G., 1988, Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis a virus and human rotavirus, from oyster, water, and sediment samples, Applied and Environmental Microbiology, Vol. 54, No. 8, pp. 1983-1988DOI
76 
Lino A., Cardoso M. A., Gonçalves H. M. R., Martins-Lopes P., 2022, SARS-CoV-2 detection methods, Chemosensors, Vol. 10, No. 6, pp. 221DOI
77 
Lv H., Wu N. C., Tsang O. T. Y., Yuan M., Perera R. A. P. M., Leung W. S., So R. T. Y., Chan J. M. C., Yip G. K., Chik T. S. H., Wang Y., Choi C. Y. C., Lin Y., Ng W. W., Zhao J., Poon L. L. M., Peiris M., Wilson I. A., Mok C. K. P., 2020, Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections, Cell Reports, Vol. 31, pp. 107725DOI
78 
Masclaux F. G., Hotz P., Friedli D., Savova-Bianchi D., Oppliger A., 2013, High occurrence of hepatitis E virus in samples from wastewater treatment plants in Switzerland and comparison with other enteric viruses, Water Research, Vol. 47, No. 14, pp. 5101-5109DOI
79 
Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A., 2020, Presence of SARS-Coronavirus\_2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands, Environmental Science & Technology letters, Vol. 7, No. 7, pp. 511-516DOI
80 
Misra R., Acharya S., Sushmitha N., 2021, Nano biosensor-based diagnostic tools in viral infections: Special emphasis on COVID-19, Reviews in Medical Virology, Vol. 32, No. 2, pp. e2267DOI
81 
Murphy F. A., 1988, Virus raxonomy and nomenclature. In: laboratory diagnosis of infectious diseases principles and practice, Springer, pp. 153-176DOI
82 
Nagamine K., Hase T., Notomi T., 2002, Accelerated reaction by loop-mediated isothermal amplification using loop primers, Molecular and Cellular Probes, Vol. 16, No. 3, pp. 223-229DOI
83 
Naughton C. C., Roman F. A., Alvarado A. G. F., Tariqi A. Q., Deeming M. Q., Bibby K., Rose J. B., Ahmed W., Katsivelis P., Allan V., Sinclair R., Zhang Y., Sinclair R., Zhang Y., Kinyua M. N., 2021, Show us the data: Global COVID-19 wastewater monitoring efforts, equity, and gaps, MedRxivDOI
84 
Navarro A., Gómez L., Sanseverino I., Niegowska M., Roka E., Pedraccini R., Vargha M., Lettieri T., 2021, SARS-CoV-2 detection in wastewater using multiplex quantitative PCR, Science of the Total Environment, Vol. 797, pp. 148890DOI
85 
Ng T.F.F., Marine R., Wang C., Simmonds P., Kapusinszky B., Bodhidatta L., Oderinde B. S., Wommack K. E., Delwart E., 2012, High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage, Journal of Virology, Vol. 86, No. 22, pp. 12161-12175DOI
86 
Notomi T., Mori Y. H., Tomita N., Kanda H., 2015, Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects, Journal of Microbiology, Vol. 53, No. 1, pp. 1-5DOI
87 
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T., 2000, Loop-mediated isothermal amplification of DNA, Nucleic Acids Research, Vol. 28, No. 12, pp. E63DOI
88 
O’CarrollI P., Rein A., 2016, Viral nucleic acids, Encyclopedia of Cell Biology, pp. 517-524DOI
89 
Park G. S., Ku K., Baek S. H., Kim S. J., Kim S. I., Kim B. T., Maeng J. S., 2020, Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), The Journal of Molecular Diagnostics, Vol. 22, No. 6, pp. 729-735DOI
90 
Pecson B. M., Darby E., Haas C. N., Amha Y. M., Bartolo M., Danielson R., Dearborn Y., Di Giovanni G., Ferguson C., Fevig S., Gaddis E., Gray D., Lukasik G., Mull B., Olivas L., Olivieri A., Qu Y., SARS-CoV-2 Interlaboratory Consortium, 2021, Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: Findings from an interlaboratory methods evaluation in the US, Environmental Science : Water Research & Technology, Vol. 7, pp. 504-520DOI
91 
Perez-Cataluna A., Cuevas-Ferrando E., Randazzo W., Falco I., Allende A., Sanchez G., 2021, Comparing analytical methods to detect SARS-CoV-2 in wastewater, Science of the Total Environment, Vol. 758, pp. 143870DOI
92 
Philo S. E., Keim E. K., Swanstrom R., Ong A. Q. W., Burnor E. A., Kossik A. L., Harrison J. C., Demeke B. A., Zhou N. A., Beck N. K., Shirai J. H., Meschke J. S., 2021, A comparison of SARS-CoV-2 wastewater concentration methods for environmental surveillance, Science of the Total Environment, Vol. 760, pp. 144215DOI
93 
Prado T., Fumian T. M., Mannarino C. F., Maranhão A. G., Siqueira M. M., Miagostovich M. P., 2020, Preliminary results of SARS- CoV-2 detection in sewerage system in Niterói municipality, Rio de Janeiro, Brazil, Memorias do Instituto Oswaldo Cruz, Vol. 115, pp. e200196DOI
94 
Quyen T. L., Ngo T. A., Bang D. D., Madsen M., Wolff A., 2019, Classification of multiple DNA dyes based on inhibition effects on real-time loop-mediated isothermal amplification (LAMP): Prospect for point of care setting, Frontiers in Microbiology, Vol. 10, pp. 2234DOI
95 
Rabe B. A., Cepko C., 2020, Proceedings of the National Academy of Sciences of the United States of America, Vol. 117, No. 39, pp. 24450-24458DOI
96 
Randazzo W., Truchado P., Cuevas-Ferrando E., Simon P., Allende A., Sanchez G., 2020, SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area, Water Research, Vol. 181, pp. 115942DOI
97 
Rimoldi S. G., Stefani F., Gigantiello A., Polesello S., Comandatore F., Mileto D., Maresca M., Longobardi C., Mancon A., Romeri F., Pagani C., Cappelli F., Roscioli C., Moja L., Gismondo M. R., Salerno F., 2020, Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers, Science of the Total Environment, Vol. 744, pp. 140911DOI
98 
Salvo M., Moller A., Alvareda E., Gamazo P., Colina R., Victoria M., 2021, Evaluation of low-cost viral concentration methods in wastewaters: Implications for SARS-CoV-2 pandemic surveillances, Journal of Virological Methods, Vol. 297, pp. 114249DOI
99 
Sapula S. A., Whittall J. J., Pandopulos A. J., Gerber C., Venter H., 2021, An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater, Science of the Total Environment, Vol. 785, pp. 147270DOI
100 
Schrader C., Schielke A., Ellerbroek L., Johne R., 2012, PCR inhibitors - occurrence, properties, and removal, Journal of Applied Microbiology, Vol. 113, No. 5, pp. 1014-1026DOI
101 
Sherchan S. P., Shahin S., Ward L. M., Tandukar S., Aw T. G., Schmitz B., Ahmed W., Kitajima M., 2020, First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA, Science of the Total Environment, Vol. 743, pp. 140621DOI
102 
Shieh Y. S., Wait D., Tai L., Sobsey M. D., 1995, Methods to remove inhibitors in sewage and other fecal wastes for enterovirus detection by the polymerase chain reaction, Journal of Virological Methods, Vol. 54, No. 1, pp. 51-66DOI
103 
Tanner N. A., Zhang Y., Evans T. C. Jr., 2015, Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes, Biotechniques, Vol. 58, No. 2, pp. 59-68DOI
104 
Thompson D., Lei Y., 2020, Recent progress in RT-LAMP enabled COVID-19 detection, Sensors and Actuators Reports, Vol. 2, No. 1, pp. 100017DOI
105 
Tiwari A., Ahmed W., Oikarinen S., Sherchan S. P., Heikinheimo A., Jiang G., Simpson S. L., Greaves J., Bivins A., 2022, Application of digital PCR for public health-related water quality monitoring, Science of the Total Environment, Vol. 837, pp. 155663DOI
106 
Tomita N., Mori Y., Kanda H., Notomi T., 2008, Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products, Nature Protocols, Vol. 3, No. 5, pp. 877-882DOI
107 
Torii S., Furumai H., Katayama H., 2021, Applicability of polyethylene glycol precipitation followed by acid guanidinium thiocyanate-phenol-chloroform extraction for the detection of SARS-CoV-2 RNA from municipal wastewater, Science of the Total Environment, Vol. 756, pp. 143067DOI
108 
Torii S., Oishi W., Zhu W., Thakali O., Malla B., Yu Z., Zhao B., Arakawa C., Kitajima M., Hata A., Ihara M., Kyuwa S., Sano D., Haramoto E., Katayama H., 2022, Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater, Science of the Total Environment, Vol. 807, pp. 150722DOI
109 
Tran H. N., Le G. T., Nguyen D. T., Juang R. S., Rinklebe J., Bhatnagar A., Lima E. C., Iqbal H. M. N., Sarmah A. K., Chao H. P., 2021, SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern, Environmental Research, Vol. 193, pp. 110265DOI
110 
Udugama B., Kadhiresan P., Kozlowski H. N., Malekjahani A., Osborne M., Li V. Y. C., Chen H., Mubareka S., Gubbay J. B., Chan W. C. W., 2020, Diagnosing COVID-19: The Disease and Tools for Detection, ACS Nano, Vol. 14, No. 4, pp. 3822-3835DOI
111 
Westhaus S., Weber F., Schiwy S., Linnemann V., Brinkmann M., Widera M., Greve C., Janke A., Hollert H., Wintgens T., Ciesek S., 2021, Detection of SARS-CoV-2 in raw and treated wastewater in Germany - Suitability for COVID-19 surveillance and potential transmission risks, Science of the Total Environment, Vol. 751, pp. 141750DOI
112 
Wolters F., van de Bovenkamp J., van den Bosch B., van den Brink S., Broeders M., Chung N.H., Favié B., Goderski G., Kuijpers J., Overdevest I., Rahamat-Langedoen J., Wijsman L., Melchers W. J., Meijer A., 2020, Multicenter evaluation of cepheid xpert xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic, Journal of Clinical Virology, Vol. 128, pp. 104426DOI
113 
World Health Organization (WHO), 2022, WHO coronavirus disease (COVID-19), https://covid19.who.int/. (accessed December 2022), DashboardGoogle Search
114 
Wu F., Zhang J., Xiao A., Gu X., Lee W. L., Armas F., Kauffman K., Hanage W., Matus M., Ghaeli N., Endo N., Duvallet C., Poyet M., Moniz K., Washburne A. D., Erickson T. B., Chai P. R., Thompson J., Alm E. J., 2020, SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases, ASM Journal, mSystems, pp. e00614-20DOI
115 
Wurtzer S., Marechal V., Mouchel J., Maday Y., Teyssou R., Richard E., Almayrac J., Moulin L., 2020, Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantifcation in wastewater, Greater Paris, France, 5 March to 23 April 2020. medRxivDOI
116 
Yu L., Wu S., Hao X., Dong X., Mao L., Pelechano V., Chen W. H., Yin X., 2020, Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform, Clinical Chemistry, Vol. 66, No. 7, pp. 975-977DOI
117 
Zhang D., Ling H., Huang X., Li J., Li W., Yi C., Zhang T., Jiang Y., He Y., Deng S., Zhang X., Wang X., Liu Y., Li G., Qu J., 2020, Potential spreading risks and disinfection challenges of medical wastewater by the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital, Science of the Total Environment, Vol. 741, pp. 140445DOI
118 
Zhang Y., Odiwuor N., Xiong J., Sun L., Nyaruaba R. O., Wei H., Tanner N. A., 2020, Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP, 2020.02.26.20028373, MedRxivDOI
119 
Zhen W., Smith E., Manji R., Schron D., Berry G. J., 2020, Clinical evaluation of three sample-to-answer platforms for the detection of SARS-CoV-2, Journal of Clinical Microbiology, Vol. 58, No. 8, pp. e00783-20DOI