The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Baek, W. and Lee, J. Y. (2011). Source apportionment of trichloroethylene in groundwater of the industrial complex in Wonju, Korea: A 15-year dispute and perspective, Water and Environment Journal, 25(3), 336-344. https://doi.org/10.1111/j.1747-6593.2010.00226.xDOI
2 
Chakinala, A. G., Bremner, D. H., Gogate, P. R., Namkung, K. C., and Burgess, A. E. (2008). Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing, Applied Catalysis B: Environmental, 78(1-2), 11-18. https://doi.org/10.1016/J.APCATB.2007.08.012DOI
3 
Cho, B. W., Yun, U., Sung, I. H., Im, H. C., and Jang, W. S. (2005). Characteristics of groundwater, sewage water and stream water contamination based on VOCs concentration around Ulsan, Korea, Economic and Environmental Geology, 38(1), 57-65.Google Search
4 
Christenson, M., Kambhu, A., Reece, J., Comfort, S., and Brunner, L. (2016). A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements, Chemosphere, 150, 239-247. https://doi.org/10.1016/j.chemosphere.2016.01.125DOI
5 
Dominguez, C. M., Rodriguez, V., Montero, E., Romero, A., and Santos, A. (2020). Abatement of dichloromethane using persulfate activated by alkali: A kinetic study, Separation and Purification Technology, 241, 116679. https://doi.org/10.1016/j.seppur.2020.116679DOI
6 
Han, K., Yeum, Y., Yun, G., Kim, H., Jeon, J., Kim, E., Kim, J., and Kim, Y. (2022a). Evaluation of reduction of chlorinated aliphatic hydrocarbons in groundwater by continuous long-term application of controlled and slow-releasing oxidation tablet, Proceedings of the 2022 Conference of the Korean Society of Environmental Engineers, Korean Society of Environmental Engineers, 915.Google Search
7 
Han, K., Yeum, Y., Yun, G., Kim, Y. W., Park, C. W., and Kim, Y. (2022b). Evaluating the efficacy of slow-releasing carbon source tablets for in situ biological heterotrophic denitrification of groundwater, Chemosphere, 304, 135268. https://doi.org/10.1016/j.chemosphere.2022.135268DOI
8 
Huling, S. G., Ko, S., Park, S., and Kan, E. (2011). Persulfate oxidation of MTBE-and chloroform-spent granular activated carbon, Journal of Hazardous Materials, 192(3), 1484-1490. https://doi.org/10.1016/j.jhazmat.2011.06.070DOI
9 
Khursan, S. L., Semes’ ko, D. G., Teregulova, A. N., and Safiullin, R. L. (2008). Analysis of the reactivities of organic compounds in hydrogen atom abstraction from their CH bonds by the sulfate radical anion SO4⋅−, Kinetics and Catalysis, 49, 202-211. https://doi.org/10.1134/S0023158408020067DOI
10 
Kitis, M., Adams, C. D., and Daigger, G. T. (1999). The effects of Fenton's reagent pretreatment on the biodegradability of nonionic surfactants, Water Research, 33(11), 2561-2568. https://doi.org/10.1016/S0043-1354(98)00476-XDOI
11 
Knauss, K. G., Dibley, M. J., Leif, R. N., Mew, D. A., and Aines, R. D. (1999). Aqueous oxidation of trichloroethene (TCE): A kinetic analysis, Applied Geochemistry, 14(4), 531-541.DOI
12 
Kolthoff, I. M. and Stenger, V. A. (1947). Volumetric analysis, second ed., Vol. I: Theoretical Fundamentals. Vol. II: Titration Methods: Acid–Base, Precipitation and Complex Reactions, Interscience Publishers Inc., New York.Google Search
13 
Liang, C., Huang, C. F., Mohanty, N., and Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO, Chemosphere, 73(9), 1540-1543. https://doi.org/10.1016/j.chemosphere.2008.08.043DOI
14 
Liang, C., Wang, Z. S., and Bruell, C. J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66(1), 106-113. https://doi.org/10.1016/j. chemosphere.2006.05.026DOI
15 
Liu, B., Zhan, H., Lu, X., Liu, Y., Huang, L., and Wei, Z. (2020). Biodegradation of carbon tetrachloride from groundwater in an upflow solid-phase biofilm system, RSC Advances, 10(13), 7500-7508. https://doi.org/10.1039/C9RA08794JDOI
16 
Pardo, F., Santos, A., and Romero, A. (2016). Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study, Science of The Total Environment, 566, 480-488. https://doi.org/10.1016/j.scitotenv.2016.04.197DOI
17 
Park, S. S., Kim, S. O., Yun, S. T., Chae, G. T., Yu, S. Y., Kim, S., and Kim, Y. (2005). Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea, Environmental Geology, 48, 1116-1131. https://doi.org/10.1007/ s00254-005-0053-8DOI
18 
Pitkäaho, S., Ojala, S., Maunula, T., Savimäki, A., Kinnunen, T., and Keiski, R. L. (2011). Oxidation of dichloromethane and perchloroethylene as single compounds and in mixtures, Applied Catalysis B: Environmental, 102(3-4), 395-403. https://doi.org/10.1016/j.apcatb.2010.12.011DOI
19 
Song, D., Park, S., Jeon, S. H., Hwang, J. Y., Kim, M., Jo, H. J., Kim, D. H., Lee, G. M., Kim, K. I., Kim, H. J., Kim, T. S., Chung, H. M., and Kim, H. K. (2017). Evaluation on four volatile organic compounds (VOCs) contents in the groundwater and their human risk level, Korean Journal of Soil Science and Fertilizer, 50(4), 235-250. https://doi.org/ 10.7745/KJSSF.2017.50.4.235DOI
20 
Teel, A. L. and Watts, R. J. (2002). Degradation of carbon tetrachloride by modified Fenton's reagent, Journal of Hazardous Materials, 94(2), 179-189. https://doi.org/10.1016/ s0304-3894(02)00068-7DOI
21 
Tsitonaki, A., Petri, B., Crimi, M., Mosbaek, H. A. N. S., Siegrist, R. L., and Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review, Critical Reviews in Environmental Science and Technology, 40(1), 55-91. https://doi.org/10.1021/es502056dDOI
22 
Ueda, M., Kitano, A., and Matsubara, H. (2021). A computational study of site-selective hydrogen abstraction by sulfate radical anion, Organic & Biomolecular Chemistry, 19(21), 4775- 4782. https://doi.org/10.1039/D1OB00587ADOI
23 
Vicente, F., Santos, A., Romero, A., and Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method, Chemical Engineering Journal, 170(1), 127-135. https://doi.org/10.1016/j.cej.2011.03.042DOI
24 
Wojnárovits, L. and Takács, E. (2019). Rate constants of sulfate radical anion reactions with organic molecules: A review, Chemosphere, 220, 1014-1032. https://doi.org/10.1016/j. chemosphere.2018.12.156DOI
25 
Xu, M., Gu, X., Lu, S., Qiu, Z., Sui, Q., Miao, Z., Zang, X., and Wu, X. (2015). Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system, Journal of Hazardous Materials, 286, 7-14. https://doi.org/ 10.1016/j.jhazmat.2014.12.031DOI
26 
Yeum, Y., Han, K., Kang, J. H., Kim, D. W., Park, C. W., Kwon, S., and Kim, Y. (2020). Production, characterization, and evaluation of two types of slow-releasing carbon source tablets for in-situ heterotrophic nitrate denitrification in aquifers, Chemosphere, 260, 127478. https://doi.org/10.1016/ j.chemosphere.2020.127478DOI
27 
Yu, S., Lee, P. K., and Hwang, S. I. (2015). Groundwater contamination with volatile organic compounds in urban and industrial areas: Analysis of co-occurrence and land use effects, Environmental Earth Sciences, 74, 3661-3677. https://doi.org/10.1007/s12665-015-4551-zDOI
28 
Yu, S., Lee, P. K., Yun, S. T., Hwang, S. I., and Chae, G. (2017). Comparison of volatile organic compounds in stormwater and groundwater in Seoul metropolitan city, South Korea, Environmental Earth Sciences, 76, 338. https:// doi.org/10.1007/s12665-017-6666-xDOI
29 
Zhu, X., Han, B., and Feng, Q. (2020). Common anions affected removal of carbon tetrachloride in groundwater using granular sponge zerovalent iron, Water, Air, & Soil Pollution, 231, 1-13. https://doi.org/10.1007/s11270-020-04494-1DOI