The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework, In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623–2631. https://doi.org/10.1145/3292500.333070DOI
2 
Aytar, Y. and Zisserman, A. (2011). Tabula rasa: Model transfer for object category detection, 2011 International Conference on Computer Vision, Barcelona, 2252-2259. https://doi.org/10.1109/ICCV.2011.6126504DOI
3 
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. (2010). A theory of learning from different domains, Machine Learning, 79(1), 151-175. https://doi.org/10.1007/s10994-009-5152-4DOI
4 
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A., Fath, B. D., and Andreassian, V. (2013). Characterising performance of environmental models, Environmental Modelling & Software, 40, 1-20. https://doi.org/10.1016/j.envsoft.2012.09.011DOI
5 
Chen, Z., Xu, H., Jiang, P., Yu, S., Lin, G., Bychkov, I., Hmelnov, A., Ruzhnikov, G., Zhu, N., and Liu, Z. (2021). A transfer learning-based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system, Journal of Hydrology, 602, 126573. https://doi.org/10.1016/j.jhydrol.2021.126573DOI
6 
Fan, D., He, H., Wang, R., Zeng, Y., Fu, B., Xiong, Y., Liu, L., Xu, Y., and Gao, E. (2022). CHLNET: A novel hybrid 1D CNN-SVR algorithm for estimating ocean surface chlorophyll-a, Frontiers in Marine Science, 9, 934536. https://doi.org/10.3389/fmars.2022.934536DOI
7 
Feng, L., Wang, Y., Hou, X., Qin, B., Kutser, T., Qu, F., Chen, N., Paerl, H. W., and Zheng, C. (2024). Harmful algal blooms in inland waters, Nature Reviews Earth and Environment, 5(9), 631-644. https://doi.org/10.1038/s43017-024-00578-2DOI
8 
Gholizade, M., Soltanizadeh, H., Rahmanimanesh, M., and Sana, S. S. (2025). A review of recent advances and strategies in transfer learning, International Journal of System Assurance Engineering and Management, 16, 1123-1621. https://doi.org/10.1007/s13198-024-02684-2DOI
9 
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning, MIT Press, chapter 9.1, 327.Google Search
10 
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2016). LSTM: A search space odyssey, IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924DOI
11 
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy, Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-2649-2DOI
12 
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory, Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735DOI
13 
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment, Computing in Science and Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55DOI
14 
Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., and Ganslandt, T. (2022). Transfer learning for medical image classification: A literature review, BMC Medical Imaging, 22(1), 69. https://doi.org/10.1186/s12880-022-00793-7DOI
15 
Kim, J., Lee, W. H., and Park, J. (2025). Improvement of deep learning model performance for algal bloom prediction by resolving data imbalance in field observations, Environmental Earth Sciences, 84(14), 1-16. https://doi.org/10.1007/s12665-025-12420-zDOI
16 
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey, Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/10.1016/j.ymssp.2020.107398DOI
17 
Kiranyaz, S., Ince, T., and Gabbouj, M. (2015). Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Transactions on Biomedical Engineering, 63(3), 664–675. https://doi.org/10.1109/TBME.2015.2468589DOI
18 
McDowell, R. W., Luo, D., Pletnyakov, P., Upsdell, M., and Dodds, W. K. (2025). Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world's population, Nature Communications, 16(1), 1830. https://doi.org/10.1038/s41467-025-57054-8DOI
19 
McKinney, W. (2010). Data structures for statistical computing in Python, Proceedings of the 9th Python in Science Conference, Austin, 445(1), 51-56. https://doi.org/10.25080/Majora-92bf1922-00aDOI
20 
Ministry of Environment (ME). (2023). Annual report on algal bloom occurrence and response, Ministry of Environment, Republic of Korea.Google Search
21 
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153DOI
22 
Nakdong River Basin Management Commission (NRMC). (2023). Master plan for water management in the nakdong river basin (2021–2030), Nakdong River Basin Management Commission, Report No. 11-1480000-001901-14.Google Search
23 
National Institute of Environmental Research (NIER). (2020). Manual for operating the algae warning system, National Institute of Environmental Research, Incheon, Republic of Korea.Google Search
24 
National Institute of Environmental Research (NIER). (2025). Water Environment Information System (WEIS), https://water.nier.go.kr (last accessed July 30, 2025)Google Search
25 
Ngiam, J., Peng, D., Vasudevan, V., Kornblith, S., Le, Q. V., and Pang, R. (2018). Domain adaptive transfer learning with specialist models, arXiv preprint arXiv:1811.07056. https://doi.org/10.48550/arXiv.1811.07056DOI
26 
Ni, J., Liu, R., Li, Y., Tang, G., and Shi, P. (2022). An improved transfer learning model for cyanobacterial bloom concentration prediction, Water, 14(8), 1300. https://doi.org/10.3390/w14081300DOI
27 
Olah, C. (2015). Understanding LSTM networks, https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (last accessed July 20, 2025).Google Search
28 
Pan, S. J. and Yang, Q. (2009). A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191DOI
29 
Park, J., Patel, K., and Lee, W. H. (2024). Recent advances in algal bloom detection and prediction technology using machine learning, Science of The Total Environment, 938, 173546. https://doi.org/10.1016/j.scitotenv.2024.173546DOI
30 
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, 32, 8024-8035. https://doi.org/10.48550/arXiv.1912.01703DOI
31 
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825-2830.Google Search
32 
Sheik, A. G., Kumar, A., Patnaik, R., Kumari, S., and Bux, F. (2024). Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives – A short review, Critical Reviews in Environmental Science and Technology, 54(7), 509–532. https://doi.org/10.3390/hydrology12060130DOI
33 
Staudemeyer, R. C. and Morris, E. R. (2019). Understanding LSTM–a tutorial into long short-term memory recurrent neural networks, arXiv, preprint. https://doi.org/10.48550/arXiv.1909.09586DOI
34 
Su, Y. C., Chiu, T. H., Yeh, C. Y., Huang, H. F., and Hsu, W. H. (2014). Transfer learning for video recognition with scarce training data for deep convolutional neural network. arXiv, preprint. https://doi.org/10.48550/arXiv.1409.4127DOI
35 
Wai, K. P., Koo, C. H., Huang, Y. F., Chong, W. C., El-Shafie, A., Sherif, M., and Ahmed, A. N. (2025). A practical temporal transfer learning model for multi-step water quality index forecasting using A CNN-coupled dual-path LSTM network, Journal of Hydrology: Regional Studies, 60, 102553. https://doi.org/10.1016/j.ejrh.2025.102553DOI
36 
Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learning, Journal of Big Data, 3(1), 9. https://doi.org/10.1186/s40537-016-0043-6DOI
37 
Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2023). Dive into deep learning, Cambridge University Press. https://d2l.ai/chapter_recurrent-modern/lstm.htmlGoogle Search
38 
Zivot, E., and Wang, J. (2006). Modeling financial time series with S-Plus®, Springer, New York, NY.Google Search