• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid




analytical capacitance calculation, stored energy calculation, inclinded dielectric media, coordinate rotation

1. ์„œ ๋ก 

ํ˜„๋Œ€์‚ฌํšŒ์—์„œ๋Š” ์ƒˆ๋กœ์šด ์ „๊ธฐ๊ธฐ๊ธฐ ๋ฐ ์ „์ž์ œํ’ˆ์ด ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์ด์— ๋”ฐ๋ฅธ ๋งŽ์€ ํ˜œํƒ์„ ์ธ๋ฅ˜๋Š” ๋ˆ„๋ฆฌ๊ณ  ์žˆ๋‹ค. ์ „๊ธฐ๊ธฐ๊ธฐ๋ฅผ ๋””์ž์ธํ•˜๊ณ  ์ƒ์‚ฐํ•˜๋Š”๋ฐ ์•ž์„œ ๊ธฐ๋ณธ์ ์œผ๋กœ ์ „๊ธฐ์žฅ์˜ ๋ถ„ํฌ๊ฐ€ ๊ณ„์‚ฐ๋˜์–ด์•ผ ํ•œ๋‹ค. ์ „๊ธฐ์žฅ์˜ ๊ณ„์‚ฐ์„ ์œ„ํ•˜์—ฌ ์ˆ˜๋งŽ์€ ์ˆ˜์น˜ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์ด ๊ฐœ๋ฐœ๋˜์–ด ํŒ๋งค๋˜๊ณ  ์žˆ์œผ๋‚˜, ์ƒ๋‹นํžˆ ๋น„์‹ธ๊ณ , ๊ณ ์„ฑ๋Šฅ์˜ CPU์™€ ์šฉ๋Ÿ‰์ด ํฐ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ ์ˆ˜์น˜ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•œ ๊ณ„์‚ฐ์€ ์‹ค์ œ ํ˜„์ƒ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌผ๋ฆฌ์  ์˜๋ฏธ๋ฅผ ๊ฐ„๊ณผํ•˜๊ธฐ ์‰ฝ๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์— ๋‹ค๋ฃจ์ง€ ์•Š์•˜๋˜ ์ˆ˜์ง ๋˜๋Š” ์ˆ˜ํ‰์œผ๋กœ ๋ฐฐ์น˜๋˜์ง€ ์•Š์€ ๋น„์Šค๋“ฌํ•˜๊ฒŒ ๊ฒฝ์‚ฌ์ง„ ํ˜•ํƒœ๋กœ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ์œ ์ „์ฒด์— ๋Œ€ํ•œ ์ˆ˜ํ•™์ ์ธ ์ „๊ธฐ์žฅ์„ ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋…ผํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์„ ๋Œ€์ƒ์— ๋Œ€ํ•œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์ด ์ตœ๋Œ“๊ฐ’ ๋Œ€๋น„ ๋น„์œจ์˜ ํ˜•ํƒœ๋กœ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ๋‚ด๋ถ€์˜ ์ „๊ธฐ์žฅ์˜ ๊ฐ’์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ฉฐ, ์žฌ๊ท€ํ•จ์ˆ˜ ๋“ฑ์„ ์ด์šฉํ•œ ์‹์œผ๋กœ ๋‚˜ํƒ€๋‚˜๊ณ (1-24), ์ „์••์ด ์ธ๊ฐ€๋˜๋Š” ์ „๊ทน๊ณผ ์ ‘์ง€ ์ „๊ทน์ด ์ด๋ฃจ๋Š” ๊ฐ๋„๊ฐ€ ํ‰ํ–‰ํ•˜์ง€ ์•Š์€ ๊ธฐ์šธ์–ด์ง„ ํ˜•ํƒœ์—์„œ๋งŒ ์ˆ˜ํ•™์  ๋ชจ๋ธ์„ ๋‹ค๋ฃจ์—ˆ๋‹ค(25-27). ์‹ค์ œ๋กœ ์œ ์ „์ฒด๋ผ๋ฆฌ ๋น„์Šค๋“ฌํ•˜๊ฒŒ ๊ฒฝ์‚ฌ์ง„ ํ˜•ํƒœ๋กœ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ๊ฒฝ์šฐ ์ˆ˜ํ•™์ ์œผ๋กœ ์ „๊ธฐ์žฅ์˜ ์‹์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์€ ์ƒ๋‹นํžˆ ๊นŒ๋‹ค๋กœ์šด ๋ฌธ์ œ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํ‰ํŒ ์ปคํŒจ์‹œํ„ฐ ๋‚ด์˜ ๋‘ ์œ ์ „์ฒด๊ฐ€ ์„œ๋กœ ๋น„์Šค๋“ฌํ•˜๊ฒŒ ๊ฒฝ์‚ฌ์ง€์–ด ์žˆ๋Š” ๊ฒฝ์šฐ, ์ง๊ต์ขŒํ‘œ๊ณ„๋ฅผ ํ†ตํ•œ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์œผ๋กœ ๋ผํ”Œ๋ผ์Šค ๋ฐฉ์ •์‹์„ ๊ตฌํ•˜๋Š” ๊ฒฝ์šฐ๋Š” ์ „์••์„ ์ธ๊ฐ€ํ•˜๋Š” ๋ถ€๋ถ„์ด ํ‰ํ–‰ํ•œ ํ˜•ํƒœ์ด๋ฏ€๋กœ ์ขŒํ‘œ์ถ•์„ ํšŒ์ „์ด๋™ํ•˜์—ฌ๋„ ๊ฒฝ๊ณ„์กฐ๊ฑด์˜ ์—ฐ์†์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ๊ฐ€ ๊ณค๋ž€ํ•˜๋‹ค. ๋˜ํ•œ ํ•ด์„์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋“ฑ๊ฐ์‚ฌ์ƒ๋ฒ•(Conformal Mapping)์„ ์ด์šฉํ•˜๋”๋ผ๋„ ์ „๊ทน์˜ ํ˜•ํƒœ๊ฐ€ ํ‰ํ–‰ํ•˜๋ฉฐ ๋งค์งˆ์˜ ๋ถ„ํฌ๊ฐ€ ๋น„์Šค๋“ฌํ•œ ๊ฒฝ์‚ฌ๋ฅผ ์ด๋ฃจ๋Š” ๊ฒฝ์šฐ ์ˆ˜ํ•™์ ์ธ ์‹์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ‰ํŒ ์ปคํŒจ์‹œํ„ฐ์—์„œ ์œ ์ „์ฒด๊ฐ€ ๊ธฐ์šธ์–ด์ง„ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ ์ •์ „์šฉ๋Ÿ‰(Capacitance)์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์œ ๋„ํ•œ ํ›„, ํ‰ํŒ ์ปคํŒจ์‹œํ„ฐ์— ์ €์žฅ๋˜๋Š” ์—๋„ˆ์ง€๋ฅผ ๊ตฌํ•˜๊ณ , ์œ ์ „์ฒด๊ฐ€ ๋งž๋‹ฟ๋Š” ๋ถ€๋ถ„์˜ ์ „๊ธฐ์žฅ์„ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ๋ฐฉํ–ฅ(Normal Component)๊ณผ ์ˆ˜ํ‰ ๋ฐฉํ–ฅ(Tangential Component)์œผ๋กœ ๋‚˜๋ˆ„์–ด์„œ ๊ฐ ์„ฑ๋ถ„์— ๋Œ€ํ•ด ์ €์žฅ๋˜๋Š” ์—๋„ˆ์ง€๋ฅผ ๊ตฌํ•œ๋‹ค. ๊ณ„๋ฉด์ด ๋น„์Šค๋“ฌํ•˜๊ฒŒ ๊ธฐ์šธ์–ด์ ธ ์žˆ์œผ๋ฏ€๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”, ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์˜ ํ˜•ํƒœ๋กœ ํ•ด์„์˜์—ญ์„ ๋ณ€ํ™˜์‹œ์ผœ ๊ณ„๋ฉด์—์„œ์˜ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•œ๋‹ค. ์‚ผ์ค‘์ (Triple Junction Point)์˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•จ์œผ๋กœ์จ ๊ณ„๋ฉด์˜ ๊ฐ๋„๊ฐ€ ์ˆ˜์ง์ด ์•„๋‹ ๋•Œ, ์ „๊ธฐ์žฅ์˜ ์ƒ์Šน์ด ์ผ์–ด๋‚˜๋ฉฐ ์ด์— ๋Œ€ํ•œ ์ „๊ธฐ์žฅ์˜ ๊ฒฝํ–ฅ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์œ ๋„ํ•œ ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ ์ „๊ธฐ์žฅ์˜ ๊ฐ’์„ Matlab์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ณ , ์ˆ˜์น˜ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์ธ Maxwell์„ ์ด์šฉํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ „๊ธฐ์žฅ์˜ ๊ฐ’์„ ๋น„๊ตํ•˜์—ฌ ์œ ํšจ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•œ๋‹ค.

2. ์ „๊ธฐ์žฅ ํ•ด์„์‹ ์œ ๋„

2.1 ์ •์ „์šฉ๋Ÿ‰ ํ•ด์„์‹ ์œ ๋„

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์Šค๋“ฌํžˆ ๊ธฐ์šธ์–ด์ง„ ๋ชจ๋ธ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ „๊ธฐ์žฅ์„ ๊ณ„์‚ฐํ•˜๊ธฐ์— ์•ž์„œ, ๋น„์Šค๋“ฌํžˆ ๊ธฐ์šธ์–ด์ง„ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ •์ „์šฉ๋Ÿ‰์„ ๊ตฌํ•˜๊ณ ์ž ํ•œ๋‹ค. ์•„๋ž˜ ๊ทธ๋ฆผ 1์€ $\theta$์˜ ๊ฐ๋„๋กœ ์ธ๊ฐ€ ์ „๊ทน์— ๋น„์œ ์ „์œจ์ด $\epsilon_{2}$์ธ ๋งค์งˆ์ด ์žˆ๊ณ  ์ ‘์ง€์ „๊ทน์— ๋น„์œ ์ „์œจ์ด $\epsilon_{1}$์ธ ๋งค์งˆ์ด ์žˆ๋Š” ๊ตฌ์กฐ์ด๋‹ค. ๊ทธ๋ฆผ 1์—์„œ ํ‘œํ˜„๋œ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ •์ „์šฉ๋Ÿ‰์„ ์ปคํŒจ์‹œํ„ฐ์˜ ์ง๋ ฌ๊ณผ ๋ณ‘๋ ฌ์˜ ๊ตฌ์„ฑ์—์„œ์˜ ๋ชจ๋ธ ๋ฐ ๋“ฑ๊ฐ€ ์ •์ „์šฉ๋Ÿ‰(Equivalent Capacitance)์„ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•˜๊ณ ์ž ํ•œ๋‹ค.

๊ทธ๋ฆผ. 1. ๊ฒฝ์‚ฌ์ง„ ์œ ์ „์ฒด ๊ณ„๋ฉด

Fig. 1. Dielectric Inclined Interface

../../Resources/kiee/KIEE.2023.72.12.1678/fig1.png

๊ณ„๋ฉด์ด ์ด๋ฃจ๋Š” ๊ฐ์ด $\theta$์ด๊ณ , x์ถ•์œผ๋กœ ๋ฏธ์†Œ ๋ถ€๋ถ„์ธ $\Delta x$ ๋ถ€๋ถ„์œผ๋กœ ๋น„์œ ์ „์œจ์ด $\epsilon_{1}$์ธ ๋งค์งˆ์˜ ์ •์ „์šฉ๋Ÿ‰์„ $C_{1}$์ด๋ผ๊ณ  ํ•˜๊ณ  ๋น„์œ ์ „์œจ์ด $\epsilon_{2}$์ธ ๋งค์งˆ์˜ ์ •์ „์šฉ๋Ÿ‰์„ $C_{2}$๋ผ ํ•˜๋ฉด ์ปคํŒจ์‹œํ„ฐ๊ฐ€ ์ง๋ ฌ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ๋“ฑ๊ฐ€ ์ •์ „์šฉ๋Ÿ‰ $C_{eq}$์— ๋Œ€ํ•œ ๊ฐ’์€ ์‹(1)๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

(1)
$\dfrac{1}{C_{1}}+\dfrac{1}{C_{2}}=\dfrac{1}{C_{eq}}$

$C_{1}$๊ณผ $C_{2}$์˜ ๋ถ€๋ถ„์„ $y=(tan\theta)x$์˜ ๊ทธ๋ž˜ํ”„๊ฐ€ ๋ถ„ํ• ํ•˜๊ณ  ์žˆ๊ณ , Z์ถ•์˜ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๊ธธ์ด๊ฐ€ 1์ด๋ผ ํ•˜๋ฉด ์ •์ „์šฉ๋Ÿ‰์€ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ์œ ์ „์ฒด์˜ ์œ ์ „์œจ์— ๋น„๋ก€ํ•˜๋ฉฐ ๋„“์ด์— ๋น„๋ก€ํ•˜๋ฏ€๋กœ $\Delta x$์— ๋น„๋ก€ํ•˜๋ฉฐ ๊ธธ์ด์— ๋ฐ˜๋น„๋ก€ํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๊ฐ ์ •์ „์šฉ๋Ÿ‰ ๊ฐ’์€ ์‹(2)์™€ ์‹(3)๊ณผ ๊ฐ™๋‹ค.

(2)
$C_{1}=\epsilon_{0}\epsilon_{1}\dfrac{\Delta x}{y}$

(3)
$C_{2}=\epsilon_{0}\epsilon_{2}\dfrac{\Delta x}{d-y}$

๋”ฐ๋ผ์„œ, ์‹(2)์™€ ์‹(3)์„ ์‹(1)์— ๋Œ€์ž…ํ•˜์—ฌ ๋ฏธ์†Œ ๋ถ€๋ถ„ $\Delta x$์— ๋Œ€ํ•œ ๋“ฑ๊ฐ€ ์ •์ „์šฉ๋Ÿ‰์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณ„์‚ฐ ์‹์˜ ๊ณผ์ •์€ ์•„๋ž˜ ์‹(4)์™€ ์‹(5)๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

(4)
$\dfrac{1}{C_{eq}}=\dfrac{y}{\epsilon_{0}\epsilon_{1}\Delta x}+\dfrac{d-y}{\epsilon_{0}\epsilon_{2}\Delta x}= \dfrac{\epsilon_{2}y+\epsilon_{1}(d-y)}{\epsilon_{0}\epsilon_{1}\epsilon_{2}\Delta x}$

(5)
$C_{eq=}\dfrac{\epsilon_{0}\epsilon_{1}\epsilon_{2}\Delta x}{\epsilon_{2}y+\epsilon_{1}(d-y)} $

์‹(5)์— ๋‚˜ํƒ€๋‚˜๋Š” ์‹์€ $\Delta x$ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ์ •์ „์šฉ๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ๊ฐ $x$๊ฐ’์— ๋”ฐ๋ผ์„œ ์ปคํŒจ์‹œํ„ฐ๊ฐ€ ๋ณ‘๋ ฌ์ด๋ฏ€๋กœ ์ „์ฒด ์ •์ „์šฉ๋Ÿ‰ $C$๋Š” ์ „์ฒด $x$์˜ ๋ฒ”์œ„์— ๋”ฐ๋ผ ์ ๋ถ„์„ ํ•œ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. $y=(tan\theta)x$์ด๋ฏ€๋กœ ์ ๋ถ„์˜ ํ˜•ํƒœ๋Š” ์‹(6)๊ณผ ๊ฐ™์€ ์ผ๋ฐ˜ํ˜•์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

(6)
$\int_{0}^{\alpha}\dfrac{c}{ax+b}dx=\dfrac{c}{a}\ln\left |\dfrac{a\alpha +b}{b}\right |$

์—ฌ๊ธฐ์„œ, $a=(\epsilon_{2}-\epsilon_{1})tan\theta$, $b=\epsilon_{1}d$, $c=\epsilon_{0}\epsilon_{1}\epsilon_{2}$, $\alpha =\dfrac{d}{tan\theta}$

์ด ์กฐ๊ฑด๋“ค์„ ๋ชจ๋‘ ์ข…ํ•ฉํ•˜์—ฌ $\theta$์˜ ๊ฐ๋„๋กœ ๊ฒฝ์‚ฌ์ง„ ๊ณ„๋ฉด์„ ์ด๋ฃจ๋Š” ๋ชจ๋ธ์˜ ์ „์ฒด ์ •์ „์šฉ๋Ÿ‰ $C$๋Š” ์‹(7)๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(7)
$C=\dfrac{\epsilon_{0}\epsilon_{1}\epsilon_{2}}{(\epsilon_{2}-\epsilon_{1})tan\theta}\ln(\dfrac{\epsilon_{2}}{\epsilon_{1}})$

์‹(7)๊ณผ ๊ฐ™์ด ๊ณ„๋ฉด์ด ์ด๋ฃจ๋Š” ๊ฐ๋„์™€ ๋น„์œ ์ „์œจ์— ๋Œ€ํ•œ ํ•จ์ˆ˜๋กœ ์ „์ฒด ์ •์ „์šฉ๋Ÿ‰์— ๋Œ€ํ•œ ์‹์ด ์œ ๋„๋˜๋ฉฐ 2.2์ ˆ์—์„œ 2.1์ ˆ์—์„œ ๊ตฌํ•œ $C$๋ฅผ ์ด์šฉํ•˜์—ฌ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•˜๊ณ ์ž ํ•œ๋‹ค.

2.2 ์ •์ „์šฉ๋Ÿ‰์„ ์ด์šฉํ•œ ์ „๊ธฐ์žฅ ํ•ด์„

๊ทธ๋ฆผ. 2. ๊ฒฝ์‚ฌ์ง„ ์œ ์ „์ฒด ๊ณ„๋ฉด์— ๋Œ€ํ•œ ํ‰ํ–‰์‚ฌ๋ณ€ํ˜• ๋ชจ๋ธ

Fig. 2. Parallelogram Model of Dielectric Inclined Interface

../../Resources/kiee/KIEE.2023.72.12.1678/fig2.png

๊ทธ๋ฆผ 2๋Š” ๊ทธ๋ฆผ 1์˜ ๊ฒฝ์‚ฌ์ง„ ์œ ์ „์ฒด ๊ณ„๋ฉด์— ๋Œ€ํ•ด ์ „๊ธฐ์žฅ ํ•ด์„์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ๋ฐฉํ–ฅ(Normal Direction)๊ณผ ํ‰ํ–‰ ๋ฐฉํ–ฅ(Tangential Direction)์œผ๋กœ ๋‚˜๋ˆ„์–ด ํ‰ํ–‰์‚ฌ๋ณ€ํ˜• ํ˜•ํƒœ๋กœ ๊ฐ ๋ฐฉํ–ฅ์œผ๋กœ ํŽผ์ณ๋†“์€ ๋ชจ๋ธ์ด๋‹ค. ์ขŒํ‘œ์ถ• ํšŒ์ „ ์ด๋™์„ ์ด์šฉํ•˜์—ฌ ์ „๊ธฐ์žฅ ํ•ด์„์„ ํ•˜๊ธฐ ์œ„ํ•จ์ด๋ฉฐ ์ „๊ธฐ์žฅ์„ ์ˆ˜์ง ์„ฑ๋ถ„(Normal Component)๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„(Tangential Component)์œผ๋กœ ๋‚˜๋ˆ„์–ด์„œ ๊ตฌํ•˜๊ณ ์ž ํ•จ์ด๋‹ค. $\epsilon_{2}$์ธ ๋งค์งˆ์— ๋Œ€ํ•ด์„œ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ์„ฑ๋ถ„์˜ ๊ฒฝ์šฐ๋Š” ๊ณ„๋ฉด์˜ ์ˆ˜์ง ๋ฐฉํ–ฅ์˜ ๊ฒฝ๋กœ์— ๋”ฐ๋ผ ์กฐ๊ธˆ์”ฉ ๋ณ€ํ™”ํ•˜๋ฉฐ ํ‰ํ–‰ ์„ฑ๋ถ„๋„ ๊ณ„๋ฉด์˜ ํ‰ํ–‰ ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ์กฐ๊ธˆ์”ฉ ๋ณ€ํ™”ํ•œ๋‹ค. ์ด๋Š” ์œ ์ „์ฒด๊ฐ€ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ๊ณ„๋ฉด์ด ๊ธฐ์šธ์–ด์ ธ ์žˆ๊ณ  ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ์œ ์ „์ฒด๊ฐ€ ๋งž๋‹ฟ์•„ ์žˆ์œผ๋ฏ€๋กœ ์ „๊ธฐ์žฅ์˜ ๊ตด์ ˆ(Refraction of Electric Field)์— ์˜ํ•˜์—ฌ ์ „๊ธฐ์žฅ์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ์œผ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „๊ธฐ์žฅ์˜ ๊ฐ ์„ฑ๋ถ„์ด ํ‰๊ท ์ ์œผ๋กœ ์ผ์ •ํ•œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•˜๋„๋ก ํ•œ๋‹ค. ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์ด ์–‘๋ฐฉํ–ฅ์œผ๋กœ ์กด์žฌํ•˜๋Š” ํ˜•ํƒœ์ด๋ฏ€๋กœ, ์ˆ˜์ง ์„ฑ๋ถ„์— ๋Œ€ํ•œ ์‹๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„์— ๋Œ€ํ•œ ์‹์„ ๋”ฐ๋กœ ๋‚˜๋ˆ„์–ด ๊ตฌํ•˜์ง€ ์•Š๊ณ , ์ˆ˜์ง ์„ฑ๋ถ„์— ๋Œ€ํ•œ ์‹๋งŒ ๊ตฌํ•˜์—ฌ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด๋Š” ์•„๋ž˜ ํ‘œํ˜„๋˜๋Š” ์‹(12)์— ๋‚˜ํƒ€๋‚˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 2์— ํ‘œํ˜„๋œ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ •์ „์šฉ๋Ÿ‰์€ ๋‘ ๊ฐœ์˜ ์ปคํŒจ์‹œํ„ฐ๊ฐ€ ๋ณ‘๋ ฌ๋กœ ๋†“์—ฌ์žˆ๋Š” ๊ฒฝ์šฐ์ด๋ฏ€๋กœ ์ „์ฒด ์ •์ „์šฉ๋Ÿ‰ ๊ฐ’์€ ์‹(8)๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚œ๋‹ค.

(8)
$C=\dfrac{\epsilon_{0}\epsilon_{1}\epsilon_{2}}{(\epsilon_{2}-\epsilon_{1})}(\dfrac{1}{tan\theta}+\dfrac{1}{\tan(\pi /2-\theta)})\ln(\dfrac{\epsilon_{2}}{\epsilon_{1}})$

์‹(8)์„ ํ†ตํ•˜์—ฌ ์ •์ „์šฉ๋Ÿ‰์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๊ณ  ๋ณธ ์‹œ์Šคํ…œ์— ์ €์žฅ๋˜๋Š” ์—๋„ˆ์ง€๋Š” ์ธ๊ฐ€๋˜๋Š” ์ „์••์ด $V_{0}$์ด๋ฏ€๋กœ ์‹(9)์™€ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(9)
$W_{e}=\dfrac{1}{2}C V_{0}^{2}$

๋‚ด๋ถ€์— ์ „๊ธฐ์žฅ์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—๋„ˆ์ง€๋ฐ€๋„๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ๋ถ€ํ”ผ๋‹น ์ €์žฅ๋˜๋Š” ์—๋„ˆ์ง€๋Š” ์‹(10)๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค(28).

(10)
$w_{V}=\dfrac{1}{2}\epsilon E^{2}$

๋”ฐ๋ผ์„œ, ์‹(10)์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ถ€ํ”ผ์— ๋Œ€ํ•ด ์ ๋ถ„์„ ํ•˜๋ฉด ์‹(9)์˜ ๊ฒฐ๊ณผ์™€ ๊ฐ™๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์œ ์ „์œจ์ด $\epsilon_{2}$์ธ ๋งค์งˆ์— ๋Œ€ํ•œ ์—๋„ˆ์ง€๋ฅผ ๊ตฌํ•œ ํ›„ ๊ณ„๋ฉด์— ๋Œ€ํ•˜์—ฌ ์ „๊ธฐ์žฅ์˜ ํ‰ํ–‰ ์„ฑ๋ถ„๊ณผ ์ˆ˜์ง ์„ฑ๋ถ„์„ ๊ตฌํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ € $\epsilon_{2}$์˜ ๋งค์งˆ์— ์ €์žฅ๋˜๋Š” ์—๋„ˆ์ง€๋Š” ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์„ ๊ฐ™์€ ๋ฉด์ ์œผ๋กœ ๋‚˜๋ˆ„๊ณ  ์žˆ์œผ๋ฏ€๋กœ ๋น„์œ ์ „์œจ์˜ ๋‚ด๋ถ„์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(11)
$W_{e2}=\dfrac{1}{2}C V_{0}^{2}\dfrac{\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}$

์‹(10)์—์„œ ๋น„์œ ์ „์œจ์ด $\epsilon_{2}$์ด๋ฏ€๋กœ ์—๋„ˆ์ง€๋ฐ€๋„๋Š” ์‹(12)์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(12)
$w_{V2}=\dfrac{1}{2}\epsilon E^{2}=\dfrac{1}{2}\epsilon_{0}\epsilon_{2}E^{2}=\dfrac{1}{2}\epsilon_{0}\epsilon_{2}(E_{\tan}^{2}+ E_{no}^{2})\approx\epsilon_{0}\epsilon_{2}E_{no}^{2}$

์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ํ‰ํ–‰์‚ฌ๋ณ€ํ˜• ๋ชจ๋ธ์—์„œ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ํ‰ํ–‰ ์„ฑ๋ถ„๊ณผ ์ˆ˜์ง ์„ฑ๋ถ„์˜ ๊ฒฝํ–ฅ์ด ๊ฐ™๋‹ค. ๋”ฐ๋ผ์„œ, $E_{\tan}\approx E_{no}$์ด๋ผ ํ•  ์ˆ˜ ์žˆ๊ณ  ์‹(12)์™€ ๊ฐ™์ด ๊ทผ์‚ฌํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋ฆฌ๊ณ , ๊ฒฝ๋กœ์— ๋”ฐ๋ผ์„œ ํ‰๊ท ์ ์œผ๋กœ ๊ฑฐ์˜ ์ผ์ •ํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ํ•ด๋‹น ์˜์—ญ์— ๋Œ€ํ•ด ์—๋„ˆ์ง€๋ฐ€๋„๋ฅผ ์ ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ. 3. ์—๋„ˆ์ง€๋ฐ€๋„ ์ ๋ถ„ ๋ชจ๋ธ

Fig. 3. Energy Density Integral Model

../../Resources/kiee/KIEE.2023.72.12.1678/fig3.png

๊ทธ๋ฆผ 3์€ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์— ๋Œ€ํ•œ ์—๋„ˆ์ง€๋ฐ€๋„ ์ ๋ถ„ ๋ชจ๋ธ์ด๋‹ค. ์ „๊ธฐ์žฅ์˜ ์ˆ˜์ง ์„ฑ๋ถ„์ด ์ผ์ •ํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•  ๋•Œ, ๋ณธ ๋ชจ๋ธ์ด ์œ ์ „์œจ์ด ์„œ๋กœ ๋‹ค๋ฅธ ์ ˆ์—ฐ๋ฌผ์ด ๋งž๋‹ฟ์•„ ์žˆ๋Š” ํ˜•ํƒœ์ด๋ฏ€๋กœ ์ „๊ธฐ์žฅ์€ $y'$์— ๋”ฐ๋ฅธ ๋ฐ˜๋น„๋ก€ํ•จ์ˆ˜๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ธธ์ด์™€ ๋น„์œ ์ „์œจ์— ๋Œ€ํ•œ ๋‚ด๋ถ„์˜ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค.

(13)
$E_{no}=\dfrac{C}{Af(x'_{i})+B}$

์—ฌ๊ธฐ์„œ,

$A=\epsilon_{2}-\epsilon_{1}$, $B=\epsilon_{1}\dfrac{d}{\cos\theta}$, $f(x'_{i})=-tan\theta x+\dfrac{d}{\cos\theta}$

$E_{no}$์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ $C$๊ฐ’์„ ๊ตฌํ•ด์•ผ ํ•˜๋ฉฐ, ์ ๋ถ„์„ ํ†ตํ•˜์—ฌ $C$๊ฐ’์„ ๊ตฌํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด $E_{no}$์„ ๊ตฌํ•œ๋‹ค.

(14)
$W_{e2}=\epsilon_{0}\epsilon_{2}\sum_{i=1}^{N}\lim_{\Delta x'\to0}(\dfrac{C}{Af(x'_{i})+B})^{2}\Delta x'$

(15)
$W_{e2}=\epsilon_{0}\epsilon_{2}\int_{0}^{\alpha}(\dfrac{C}{Af(x)+B})^{2}dx=\int_{0}^{\alpha}(\dfrac{C}{Amx+An+B})^{2}dx$

์—ฌ๊ธฐ์„œ, $m=-tan\theta$, $n=\dfrac{d}{\cos\theta}$, $\alpha =\dfrac{d}{\sin\theta}$

(16)
$W_{e2}=\dfrac{\epsilon_{0}\epsilon_{2}C^{2}}{Am}(\dfrac{1}{An+B}-\dfrac{1}{Am\alpha +An+B})$

(17)
$C=\sqrt{\dfrac{W_{e2}Am}{\epsilon_{0}\epsilon_{2}}/(\dfrac{1}{An+B}-\dfrac{1}{Am\alpha +An+B})}$

(18)
$E_{no 2}=\dfrac{\sqrt{\dfrac{W_{e2}Am}{\epsilon_{0}\epsilon_{2}}/(\dfrac{1}{An+B}-\dfrac{1}{Am\alpha +An+B})}}{ }(\epsilon_{2}-\epsilon_{1})(-tan\theta x+\dfrac{d}{\cos\theta})+\epsilon_{1}\dfrac{d}{\cos\theta}$

(19)
$E_{no 1}=\epsilon_{2}\dfrac{E_{no 2}}{\epsilon_{1}}$

์‹(18)๊ณผ ์‹(19)์—์„œ ๊ตฌํ•œ ๊ฐ’์„ ๋”ํ•œ ํ›„ ๋น„์œ ์ „์œจ์˜ ๋น„์œจ๋กœ ๋‚ด๋ถ„ํ•˜์—ฌ ๊ณ„๋ฉด์— ์ˆ˜์ง ์„ฑ๋ถ„(Normal Component)์„ ๊ตฌํ•œ๋‹ค. ๊ณ„๋ฉด ํ‘œ๋ฉด์˜ ์—ฐ๋ฉด ์„ฑ๋ถ„(Tangential Component)์˜ ๊ฒฝ์šฐ๋Š” ์œ ์ „์œจ๊ณผ ์ƒ๊ด€์ด ์—†์œผ๋ฉฐ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ๋Š” ์ „๊ธฐ์žฅ์ด ์ •์ ์ธ ์ „๊ธฐ์žฅ๊ณผ ๊ด€๋ จ๋œ ๊ฒƒ์ด๋ฏ€๋กœ ์—ฐ๋ฉด ์„ฑ๋ถ„์— ๋”ฐ๋ผ ์ „๊ธฐ์žฅ์„ ์ ๋ถ„ํ•˜๋ฉด ์ธ๊ฐ€ํ•˜๋Š” ์ „์••์ด ๋‚˜ํƒ€๋‚œ๋‹ค.

(20)
$\int_{0}^{\dfrac{d}{\sin\theta}}E_{\tan}dl =V_{0}$

์‹(20)์— ๋”ฐ๋ผ ์—ฐ๋ฉด ์„ฑ๋ถ„์˜ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•˜๋ฉฐ ๊ฐ ์„ฑ๋ถ„์„ ๊ณ„์‚ฐํ•œ ํ›„ ์‹(21)๊ณผ ๊ฐ™์ด ์ „๊ณ„ ๊ฐ•๋„๋ฅผ ๊ตฌํ•˜๊ฒŒ ๋œ๋‹ค.

(21)
$E_{mag}=\sqrt{E_{no}^{2}+ E_{\tan}^{2}}$

์ƒ๊ธฐ ๋ชจ๋ธ์€ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ 2๊ฐ€์ง€ ๋ฌผ์งˆ์— ๋Œ€ํ•œ ๊ฒฝ์šฐ์ด๋‹ค. ์œ„์˜ ๋ชจ๋ธ๊ณผ ๋‹ค๋ฅด๊ฒŒ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ 2๊ฐ€์ง€ ์ด์ƒ์˜ ๋ฌผ์งˆ์ด ์ค‘์ฒฉ๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ ๊ณ„๋ฉด์—์„œ์˜ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ํ•˜๊ธฐ์™€ ๊ฐ™์ด ๋…ผํ•˜๊ณ ์ž ํ•œ๋‹ค.

๊ทธ๋ฆผ. 4. 3๊ฐœ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋ชจ๋ธ

Fig. 4. Three Different Dielectric Constants Model

../../Resources/kiee/KIEE.2023.72.12.1678/fig4.png

๊ทธ๋ฆผ 4๋Š” 3๊ฐœ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋ชจ๋ธ์„ ๋ณด์—ฌ์ค€๋‹ค. $\epsilon_{1}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์€ ๊ฐ๋„ $\alpha$๋กœ ๊ธฐ์šธ์–ด์ง„ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์€ ๊ฐ๋„ $\beta$๋กœ ๊ธฐ์šธ์–ด์ง„ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ  ๋‚˜๋จธ์ง€ ๋ถ€๋ถ„์€ $\epsilon_{3}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ ๊ณ„๋ฉด์ด ๋‘ ๊ฐœ๊ฐ€ ์กด์žฌํ•˜๊ฒŒ ๋œ๋‹ค. ์ฆ‰, $\epsilon_{1}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ๊ณผ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์— ๋Œ€ํ•œ ๊ณ„๋ฉด๊ณผ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ๊ณผ $\epsilon_{3}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์— ๋Œ€ํ•œ ๊ณ„๋ฉด, ์ด ๋‘ ๊ฐœ์˜ ๊ณ„๋ฉด์ด ์กด์žฌํ•˜๊ฒŒ ๋œ๋‹ค. ๊ฐ๊ฐ์˜ ๊ณ„๋ฉด์— ๋Œ€ํ•ด ์ „๊ธฐ์žฅ์„ ๊ตฌํ•  ๊ฒฝ์šฐ ์˜ˆ๋ฅผ ๋“ค์–ด $\epsilon_{1}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ๊ณผ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์— ๋Œ€ํ•œ ๊ณ„๋ฉด์„ ๊ณ ๋ คํ•  ๊ฒฝ์šฐ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ€์ง„ ๋งค์งˆ๊ณผ $\epsilon_{3}$์ธ ์œ ์ „์œจ์„ ๊ฐ€์ง„ ๋งค์งˆ์€ ๋‘ ๋งค์งˆ์„ ๋Œ€ํ‘œํ•˜๋Š” ๋“ฑ๊ฐ€์œ ์ „์œจ $\epsilon_{eq}$๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ •์ „์šฉ๋Ÿ‰์˜ ๊ฒฝ์šฐ ๋งค์งˆ์˜ ์œ ์ „์œจ๊ณผ ๊ธฐํ•˜ํ•™์ ์ธ ํฌ๊ธฐ๋กœ ๊ฒฐ์ •์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ง๋ ฌ์ด๊ฑฐ๋‚˜ ๋ณ‘๋ ฌ์ผ ๊ฒฝ์šฐ์— ๋“ฑ๊ฐ€์ •์ „์šฉ๋Ÿ‰์„ ๊ตฌํ•˜๋Š” ๊ฒƒ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋“ฑ๊ฐ€์œ ์ „์œจ $\epsilon_{eq}$๋กœ ํ‘œํ˜„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ๊ณผ $\epsilon_{3}$์ธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋งค์งˆ์— ๋Œ€ํ•œ ๊ณ„๋ฉด์„ ๊ณ ๋ คํ•  ๊ฒฝ์šฐ์—๋„ $\epsilon_{1}$์ธ ์œ ์ „์œจ์„ ๊ฐ€์ง„ ๋งค์งˆ๊ณผ $\epsilon_{2}$์ธ ์œ ์ „์œจ์„ ๊ฐ€์ง„ ๋งค์งˆ์€ ๋‘ ๋งค์งˆ์„ ๋Œ€ํ‘œํ•˜๋Š” ๋“ฑ๊ฐ€์œ ์ „์œจ $\epsilon_{eq}$๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๋ฌผ๋ฆฌ์  ์˜๋ฏธ๋ฅผ ํ‘œํ˜„ํ•œ ๊ทธ๋ฆผ์€ ์•„๋ž˜ ๊ทธ๋ฆผ 5์™€ ๊ฐ™๋‹ค.

๊ทธ๋ฆผ. 5. ๋“ฑ๊ฐ€ ์œ ์ „์œจ ๋ชจ๋ธ

Fig. 5. Equivalent Dielectric Constants Model

../../Resources/kiee/KIEE.2023.72.12.1678/fig5.png

์œ„์— ๊ธฐ์ˆ ํ•œ ๋ฐ”์™€ ๊ฐ™์ด, 3๊ฐœ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋ชจ๋ธ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์„ ๊ฒฝ์šฐ ๊ทธ๋ฆผ 5์™€ ๊ฐ™์ด 2๊ฐœ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋ชจ๋ธ๋กœ ๋‚˜๋ˆ„์–ด์„œ ๊ณ„์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, 4๊ฐœ ์ด์ƒ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋ชจ๋ธ์ผ ๊ฒฝ์šฐ๋ผ๋„ ๊ฐ ๊ณ„๋ฉด์— ๋Œ€ํ•ด ๋‚˜๋ˆ„์–ด์„œ ๋“ฑ๊ฐ€ ์œ ์ „์œจ์„ ๊ตฌํ•˜์—ฌ ๊ณ„์‚ฐํ•˜๋ฉด ๋ณธ ์ ˆ์—์„œ ๋‹ค๋ฃจ์—ˆ๋˜ ์ •์ „์šฉ๋Ÿ‰์„ ๊ตฌํ•˜์—ฌ ์ „๊ธฐ์žฅ์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ $n(n\ge 3)$๊ฐœ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋งค์งˆ์ด ์ค‘์ฒฉ๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ $n-1$๊ฐœ์˜ ๋“ฑ๊ฐ€ ์œ ์ „์œจ์„ ๊ตฌํ•˜๋ฉฐ ๊ณ„์‚ฐํ•˜๋ฉด ๋ณธ ์ ˆ์—์„œ ๋‹ค๋ฃฌ ๋ฐฉ๋ฒ•์„ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

2.3 ์‚ฌ๋ก€ ์—ฐ๊ตฌ

๊ทธ๋ฆผ. 6. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 10ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 6. Electric field intensity magnitude for 10ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig6.png

๊ทธ๋ฆผ. 7. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 20ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 7. Electric field intensity magnitude for 20ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig7.png

๊ทธ๋ฆผ. 8. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 30ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 8. Electric field intensity magnitude for 30ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig8.png

๊ทธ๋ฆผ. 9. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 40ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 9. Electric field intensity magnitude for 40ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig9.png

๊ทธ๋ฆผ. 10. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 50ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 10. Electric field intensity magnitude for 50ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig10.png

๊ทธ๋ฆผ. 11. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 60ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 11. Electric field intensity magnitude for 60ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig11.png

๊ทธ๋ฆผ. 12. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 70ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 12. Electric field intensity magnitude for 70ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig12.png

๊ทธ๋ฆผ. 13. ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 80ยฐ์ผ ๋•Œ์˜ ์ „๊ธฐ์žฅ ํฌ๊ธฐ

Fig. 13. Electric field intensity magnitude for 80ยฐ

../../Resources/kiee/KIEE.2023.72.12.1678/fig13.png

2.1์ ˆ๊ณผ 2.2์ ˆ์„ ํ†ตํ•˜์—ฌ ์œ ๋„ํ•œ ์ „๊ธฐ์žฅ ๊ณ„์‚ฐ์‹์„ ์ด์šฉํ•˜์—ฌ Matlab์œผ๋กœ ์ „๊ธฐ์žฅ์„ ๊ณ„์‚ฐํ•˜๊ณ , ๋น„๊ต ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ƒ์šฉํ”„๋กœ๊ทธ๋žจ์ธ Maxwell์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ธ๊ฐ€๋˜๋Š” ์ „์••์€ 50[kV]๋กœ ์„ค์ •ํ•˜๊ณ , ์ „๊ทน ๊ฐ„ ๊ฑฐ๋ฆฌ๋Š” 25[cm]๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๋น„์œ ์ „์œจ์€ 2, 4, 6, 8์˜ ๊ฒฝ์šฐ๋กœ ๋‚˜๋ˆ„์–ด ๊ณ„์‚ฐ์„ ํ•˜์˜€๊ณ , ๊ณ„๋ฉด์˜ ๊ฐ๋„๋ฅผ 10ยฐ๋ถ€ํ„ฐ 80ยฐ๊นŒ์ง€ 10ยฐ์”ฉ ์ฆ๊ฐ€์‹œ์ผœ ๊ฐ๊ฐ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ๊ณ„์‚ฐ์„ ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 6์œผ๋กœ๋ถ€ํ„ฐ ๊ทธ๋ฆผ 13๊นŒ์ง€ ๋ณธ ์ ˆ์—์„œ ์œ ๋„๋œ ํ•ด์„์‹์„ ์ด์šฉํ•œ ๊ฒฐ๊ณผ์™€ ์ƒ์šฉํ”„๋กœ๊ทธ๋žจ์ธ Maxwell์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋น„๊ตํ•˜์˜€์œผ๋ฉฐ, ๋ถˆ์ผ์น˜ํ•จ๊ณผ ๊ด€๋ จ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ถˆ์ผ์น˜ ์ •๋„ $E$ ๋ฅผ ์•„๋ž˜ ์‹(22)์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•˜์˜€๋‹ค.

(22)
$E=\log_{10}(\Sigma_{i=1}^{n}(Analytical(i)-"\sim ulation"(i))^{2})$

์—ฌ๊ธฐ์„œ, $n="Division"$

๊ฐ’์ด ์ƒ๋‹นํžˆ ํฌ๋ฏ€๋กœ ์ƒ์šฉ๋กœ๊ทธ๊ฐ’์„ ์ทจํ•˜์˜€์œผ๋ฉฐ, ์‹(22)๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ„๋ฉด ๊ฐ๋„์— ๋”ฐ๋ผ ๋ถˆ์ผ์น˜ ์ •๋„ $E$ ๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ๋Š” ์•„๋ž˜ ๊ทธ๋ฆผ 14์™€ ๊ฐ™์ด ๋‚˜ํƒ€๋‚œ๋‹ค.

๊ทธ๋ฆผ. 14. ๊ณ„๋ฉด ๊ฐ๋„์— ๋”ฐ๋ฅธ ๋ถˆ์ผ์น˜ ์ •๋„

Fig. 14. Inconsistency according to the interface angle

../../Resources/kiee/KIEE.2023.72.12.1678/fig14.png

๊ทธ๋ฆผ 14์—์„œ ๋ณด๋“ฏ์ด ์œ ์ „์œจ์ด 2์ธ ๊ฒฝ์šฐ๋Š” ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 10ยฐ์—์„œ๋ถ€ํ„ฐ 50ยฐ๊นŒ์ง€๋Š” ๋ถˆ์ผ์น˜ ์ •๋„๊ฐ€ ์ž‘์œผ๋‚˜ ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 60ยฐ์—์„œ๋ถ€ํ„ฐ 80ยฐ๊นŒ์ง€๋Š” ๋ถˆ์ผ์น˜ ์ •๋„๊ฐ€ ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์œ ์ „์œจ์ด 4 ๋˜๋Š” 6์ธ ๊ฒฝ์šฐ๋Š” ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 10ยฐ์—์„œ๋ถ€ํ„ฐ 60ยฐ๊นŒ์ง€๋Š” ๋ถˆ์ผ์น˜ ์ •๋„๊ฐ€ ์ž‘์œผ๋‚˜ ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 70ยฐ์—์„œ๋ถ€ํ„ฐ 80ยฐ๊นŒ์ง€๋Š” ๋ถˆ์ผ์น˜ ์ •๋„๊ฐ€ ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์œ ์ „์œจ์ด 8์ธ ๊ฒฝ์šฐ๋Š” 10ยฐ์ธ ๊ฒฝ์šฐ๋ถ€ํ„ฐ 60ยฐ๊นŒ์ง€์˜ ๊ฒฝ์šฐ๋Š” ๋ถˆ์ผ์น˜ ์ •๋„๊ฐ€ ์ž‘๊ณ  70ยฐ์ธ ๊ฒฝ์šฐ์™€ 80ยฐ์ธ ๊ฒฝ์šฐ์— ๋ถˆ์ผ์น˜ ์ •๋„๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์€ ๊ณ„๋ฉด ๊ฐ๋„๊ฐ€ 10ยฐ์—์„œ๋ถ€ํ„ฐ 50ยฐ๊นŒ์ง€ ์‹ ๋ขฐ์„ฑ์ด ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์ด ํ•ด๋‹น ๋ชจ๋ธ์„ ์ขŒํ‘œ์ถ• ํšŒ์ „์„ ์ด์šฉํ•œ ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์˜ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ „๊ธฐ์žฅ์˜ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ์„ฑ๋ถ„๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„์˜ ๊ฒฝํ–ฅ์ด ๊ฑฐ์˜ ๊ฐ™๋‹ค๋Š” ์กฐ๊ฑด์„ ๊ฐ€์ง€๊ณ  ๊ณ„์‚ฐํ•œ ๊ฒƒ์ด๋ฏ€๋กœ ์ „์ฒด๊ฐ๋„์— ๋Œ€ํ•ด์„œ ์œ ๋„ํ•œ ๋ฐฉ๋ฒ•์ด ๋งŒ์กฑํ•˜์ง€ ์•Š๊ณ  10ยฐ์—์„œ๋ถ€ํ„ฐ 50ยฐ๊นŒ์ง€ ์‹ ๋ขฐ์„ฑ์„ ๊ฐ–์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ „์ฒด๊ฐ๋„์— ๋Œ€ํ•ด ๋ชจ๋‘ ๋งŒ์กฑํ•˜์ง€ ์•Š๋Š” ์ด์œ ๋Š” ๋ณธ ๋…ผ๋ฌธ์—์„œ์˜ ์ˆ˜ํ•™์  ๋ฐฉ๋ฒ•์ด ์ „๊ธฐ์žฅ์˜ ์ˆ˜์ง ์„ฑ๋ถ„์„ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์œ ๋„๋œ ๋ฐฉ๋ฒ•์ด๋ฏ€๋กœ 90ยฐ๋กœ ๊ทผ์ ‘ํ• ์ˆ˜๋ก ์ „๊ธฐ์žฅ์˜ ์—ฐ๋ฉด ์„ฑ๋ถ„์ด ์ˆ˜์ง ์„ฑ๋ถ„์— ๋น„ํ•ด ์ปค์ง€๋ฏ€๋กœ ์˜ค์ฐจ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ๋˜ํ•œ ์‚ผ์ค‘์ (Triple Junction Point) ๋ถ€๊ทผ์—์„œ๋Š” ์ƒ์šฉํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•˜์—ฌ ์ „์›๊ณผ ์ ‘์ง€๋ถ€๋ถ„์˜ ์‚ผ์ค‘์  ๋ถ€๊ทผ์—์„œ ๋ฉ”์‰ฌ๋ฅผ ๋‚˜๋ˆ„์–ด์„œ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•  ๊ฒฝ์šฐ, ํŠน์ด์ (Singular Point)์˜ ์ผ์ข…์ธ ์‚ผ์ค‘์ (Triple Junction Point)์—์„œ ์—๋„ˆ์ง€๊ฐ€ ์ง‘์ค‘๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๋ฏ€๋กœ ์ธ๊ฐ€์ „์•• ์ „๊ทน ๋ถ€๊ทผ์˜ ์‚ผ์ค‘์ (Triple Junction Point)์—์„œ ์ „๊ณ„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๋ฉฐ, ๋ณธ ๋ชจ๋ธ์€ ์ •์ „๊ธฐ์žฅ์ด๋ฏ€๋กœ ๊ณ„๋ฉด์˜ ๊ธธ์ด ๋ฏธ์†Œ ์„ฑ๋ถ„์— ๋Œ€ํ•œ ์ „๊ธฐ์žฅ์˜ ์ ๋ถ„์ด ์ „์ฒด์ธ๊ฐ€๋˜๋Š” ์ „์••์ด ๋˜๋ฏ€๋กœ ์ธ๊ฐ€๋˜๋Š” ์ „์••์ด๋ผ๋Š” ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๊ธฐ ์œ„ํ•ด ์ ‘์ง€์ธก ๋ถ€๊ทผ์˜ ์‚ผ์ค‘์ (Triple Junction Point)์—์„œ๋Š” ์ „๊ณ„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ํ•˜๊ฐ•ํ•˜๋Š” ํ˜•ํƒœ๋ฅผ ๋„์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์—์„œ ํ•ด์„์  ๋ฐฉ๋ฒ•์—์„œ๋Š” ์•ž์„œ ์„œ์ˆ ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ „๊ธฐ์žฅ์˜ ์ˆ˜์ง ์„ฑ๋ถ„๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„์˜ ๊ฒฝํ–ฅ์ด ๊ฑฐ์˜ ๊ฐ™๋‹ค๋Š” ์กฐ๊ฑด์„ ๊ฐ€์ง€๊ณ  ๋‹คํ•ญ์‹์˜ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ์‚ผ์ค‘์ (Triple Junction Point) ๊ทผ์ฒ˜์—์„œ์˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋Š” ์ ์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

5. ๊ฒฐ ๋ก 

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์Šค๋“ฌํ•˜๊ฒŒ ๊ธฐ์šธ์–ด์ง„ ๊ณ„๋ฉด์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ์œ ์ „์ฒด ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•œ ์ •์ „์šฉ๋Ÿ‰์„ ๊ตฌํ•˜๋Š” ์œ ๋„์‹์„ ๊ตฌํ•˜๊ณ , ์ €์žฅ๋˜๋Š” ์—๋„ˆ์ง€๋ฅผ ๊ตฌํ•œ ํ›„ ๊ณ„๋ฉด์—์„œ์˜ ์ „๊ธฐ์žฅ์„ ๊ตฌํ•˜๋Š” ๊ทผ์‚ฌ์ ์ธ ๋ฐฉ๋ฒ•์„ ๋„์ถœํ•˜์˜€๋‹ค. ํ•ด๋‹น ๋ชจ๋ธ์„ ์ขŒํ‘œ์ถ• ํšŒ์ „์„ ์ด์šฉํ•œ ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์˜ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ „๊ธฐ์žฅ์˜ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ์„ฑ๋ถ„๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„์œผ๋กœ ๋‚˜๋ˆˆ ํ›„ ์ €์žฅ๋œ ์—๋„ˆ์ง€๋ผ๋Š” ์ œํ•œ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฐ’์„ ๊ตฌํ•จ์œผ๋กœ์จ, ์ „๊ธฐ์žฅ์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์œ ๋„ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ๋…ผ๋ฌธ ๋“ฑ์—์„œ๋Š” ์ „๊ธฐ์žฅ์˜ ๊ฐ’์„ ๊ตฌํ•˜์ง€ ์•Š๊ณ  ๋น„์œจ๋งŒ์„ ๊ตฌํ•˜๋Š” ํ˜•ํƒœ์ด๋ฉฐ ์žฌ๊ท€ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ธ๊ฐ€์ „์••์„ ์ œ๊ณตํ•˜๋Š” ์ „๊ทน๊ณผ ์ ‘์ง€ ์ „๊ทน์ด ์„œ๋กœ ํ‰ํ–‰ํ•˜์ง€ ์•Š์„ ๋•Œ ๋“ฑ๊ฐ์‚ฌ์ƒ๋ฒ• ๋“ฑ์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ์ „๊ธฐ์žฅ์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ฃผ๋ฅ˜๋ฅผ ์ด๋ฃจ์—ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „๊ธฐ์žฅ์˜ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ์„ฑ๋ถ„๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„์˜ ํ‰๊ท ๊ฐ’์„ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ, ์ „๊ธฐ์žฅ์˜ ์ˆ˜์ง ์„ฑ๋ถ„ ๊ฒฝํ–ฅ๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„ ๊ฒฝํ–ฅ์ด ๊ฑฐ์˜ ๊ฐ™๋‹ค๋Š” ๋ฌผ๋ฆฌ์ ์ธ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ „๊ธฐ์žฅ์˜ ์ˆ˜์ง ์„ฑ๋ถ„์œผ๋กœ ํ•ด๋‹น ๋ชจ๋ธ์— ๋Œ€ํ•œ ๋ฌธ์ œ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. 2๊ฐœ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋งค์งˆ์ด ๊ณ„๋ฉด์„ ๊ฐ€์ง€๊ณ  ๋งž๋‹ฟ์•„ ์žˆ๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ํ•ด๋‹น ๋ฐฉ๋ฒ•์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์œ ๋„๋ฅผ ํ•˜์˜€๊ณ , 3๊ฐœ ์ด์ƒ์˜ ์œ ์ „์œจ์ด ๋‹ค๋ฅธ ๋งค์งˆ์ด ์„ž์—ฌ ์žˆ๋Š” ๊ฒฝ์šฐ์—๋„ ๊ฐ ๋งค์งˆ์— ๋Œ€ํ•œ ๊ณ„๋ฉด์— ๋Œ€ํ•˜์—ฌ ๋“ฑ๊ฐ€ ์œ ์ „์œจ์„ ๊ณ„์‚ฐํ•˜์—ฌ ๊ตฌํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์œ ๋„ํ•œ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์œ ๋„๋œ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ „๊ธฐ์žฅ์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒฝ์šฐ ๊ณ„๋ฉด์˜ ๊ฐ๋„๋ฅผ 10ยฐ์”ฉ ์ฆ๊ฐ€์‹œ์ผœ ์ „๊ธฐ์žฅ์˜ ๊ฒฝํ–ฅ์„ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ ๋น„๊ต ๊ฒ€์ฆ ๊ฒฐ๊ณผ, ๊ณ„๋ฉด์„ ์ด๋ฃจ๋Š” ๊ฐ๋„๊ฐ€ 10ยฐ์—์„œ๋ถ€ํ„ฐ 50ยฐ๊นŒ์ง€์ผ ๊ฒฝ์šฐ ์‹ ๋ขฐ์„ฑ์„ ๊ฐ–๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒ„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์ด ํ•ด๋‹น ๋ชจ๋ธ์„ ์ขŒํ‘œ์ถ• ํšŒ์ „์„ ์ด์šฉํ•œ ํ‰ํ–‰์‚ฌ๋ณ€ํ˜•์˜ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ „๊ธฐ์žฅ์˜ ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์ˆ˜์ง ์„ฑ๋ถ„๊ณผ ํ‰ํ–‰ ์„ฑ๋ถ„์˜ ๊ฒฝํ–ฅ์ด ๊ฑฐ์˜ ๊ฐ™๋‹ค๋Š” ์กฐ๊ฑด์„ ๊ฐ€์ง€๊ณ  ๊ณ„์‚ฐํ•œ ๊ฒƒ์ด๋ฏ€๋กœ ์ „์ฒด๊ฐ๋„์— ๋Œ€ํ•ด์„œ ์œ ๋„ํ•œ ๋ฐฉ๋ฒ•์ด ๋งŒ์กฑํ•˜์ง€ ์•Š๊ณ  10ยฐ์—์„œ๋ถ€ํ„ฐ 50ยฐ๊นŒ์ง€ ์ˆ˜์น˜ํ•ด์„ ๊ฒฐ๊ณผ์™€ ๋ถˆ์ผ์น˜๊ฐ€ ์ž‘์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ด๋Š” ๋ณธ ๋…ผ๋ฌธ์—์„œ ์œ ๋„ํ•œ ๋ฐฉ๋ฒ•์ด ์ „๊ธฐ์žฅ์˜ ์ˆ˜์ง ์„ฑ๋ถ„์„ ๋ถ„์„ํ•˜์—ฌ ๊ตฌํ•œ ๋ฐฉ๋ฒ•์ด๋ฏ€๋กœ 90ยฐ์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ „๊ธฐ์žฅ์˜ ์—ฐ๋ฉด ์„ฑ๋ถ„์ด ์šฐ์„ธํ•˜์—ฌ ์˜ค์ฐจ๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๊ฐ€ ํ–ฅํ›„ ๊ฐœ๋ฐœ๋  ์ „๊ธฐ๊ธฐ๊ธฐ ๋ฐ ์ „์ž์ œํ’ˆ์˜ ๋‹ค์–‘ํ•œ ๊ธฐํ•˜ํ•™์  ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ „๊ธฐ์žฅ์˜ ๊ด€์ ์—์„œ์˜ ์„ค๊ณ„์— ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋˜๋ฉฐ, ๊ณ ๊ฐ€์˜ ํ”„๋กœ๊ทธ๋žจ์ด ์—†๋Š” ๊ฒฝ์šฐ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์œ ๋„๋œ ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ๊ฐ„๋‹จํ•œ ์Šคํ”„๋ ˆ๋“œ์‹œํŠธ(Spread Sheet) ํ”„๋กœ๊ทธ๋žจ์„ ๊ฐ€์ง€๊ณ  ์ „๊ธฐ์žฅ์„ ํ•ด์„ํ•˜๊ณ  ์˜ˆ์ธกํ•  ๋•Œ ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญํ† ๊ตํ†ต๋ถ€(๊ตญํ† ๊ตํ†ต๊ณผํ•™๊ธฐ์ˆ ์ง„ํฅ์›)์˜ ์ง€์›์œผ๋กœ ์ง„ํ–‰๋œ ๊ตญ๊ฐ€์—ฐ๊ตฌ๊ฐœ๋ฐœ์‚ฌ์—…(์ฒ ๋„๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…) โ€œETCS L3(์ด๋™ํ์ƒ‰)๊ธ‰ ์—ด์ฐจ์ œ์–ด์‹œ์Šคํ…œ ๊ธฐ์ˆ  ๋ฐ ์„ฑ๋Šฅ ๊ฒ€์ฆ, [๊ณผ์ œ๋ฒˆํ˜ธ: 1615011809-163166]โ€์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

References

1 
J. Mexiner, 1972, The Behavior of Electromagnetic Fields at Edges, IEEE Trans. on Antenna Propag., Vol. 20, No. , pp. 442-446DOI
2 
T. Takuma, T. Kawamoto, H. Fujinami, 1982, Effect of Conduction on Field Behavior near Singular Points in Composite Medium Arrangements, IEEE Trans. on Electrical Insul., Vol. 17, No. , pp. 269-275DOI
3 
T. Takuma, T. Kouno, M. Matsuda, 1978, Field Behavior Near Singular Points in Composite Dielectric Arrangements, IEEE Trans. on Electrical Insul., Vol. 13, No. , pp. 426-435DOI
4 
T. Takuma, 1991, Field Behavior at a Triple Junction in Composite Dielectric Arrangements, IEEE Trans. on Electrical Insul., Vol. 26, No. , pp. 500-509DOI
5 
T. Takuma, 2007, Field Enhancements at a Triple Junction in Arrangements Consisting of Three Media, IEEE Trans. on Dielectrics and Electrical Insul., Vol. 14, No. , pp. 566-571DOI
6 
M. S. Chung, B. G. Yoon, 2004, Theoretical analysis of the enhanced electric field at the triple junction, Journal of Vacuum Science Technology, Vol. B22, No. , pp. 1240-1243DOI
7 
B. Techaumnat, S. Hamada, T. Takuma, 2002, Effect of conductivity in triple junction problems, Journal of Electrostatics, Vol. 56, No. , pp. 67-76DOI
8 
B. Techaumnat, T. Takuma, 2006, Electric field and force on a conducting sphere in contact with a dielectric solid, Journal of Electrostatics, Vol. 64, No. , pp. 165-175DOI
9 
B. Techaumnat, S. Hamada, T. Takuma, 2001, Electric Field Behavior near a Contact Point in the Presence of Volume Conductivity, IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 8, No. , pp. 930-935DOI
10 
M. Mittra, S. W. Lee, 1971, Analytical Techiques in the Theory of Guided Waves, MacmillanDOI
11 
T. Takuma, T. Kawamoto, 1984, Field Intensification near various points of contact with a zero contact angle between a solid dielectric and an electrode, IEEE Trans. on Power Apar. Syst., Vol. 103, No. , pp. 2486-2494DOI
12 
B. Techaumnat, S. Hamada, T. Takuma, 2002, Electric Field Behavior near a Zero-Angle Contact Point in the Presence of Surface Conductivity, IEEE Trans. on Dielectrics and Electr Insulation, Vol. 9, pp. 537-543DOI
13 
J. Van Bladel, 1985, Field Singularities at Metal-Dielectric Wedges, IEEE Trans. on Antennas Propag., Vol. 33, pp. 450-455DOI
14 
J. Bach. Andersen, V. V. Solodukhov, 1978, Field Behavior near a Dielectric Wedge, IEEE Trans. on Antennas Propag., Vol. 26, pp. 598-602DOI
15 
J. Van Bladel, 1983, Field Singularities at the Tip of a Cone, Proceedings of the IEEE, Vol. 71, pp. 901-902DOI
16 
J. Van Bladel, 1985, Field Singularities at the Tip of a Dielectric Cone, IEEE Trans. on Antennas Propag., Vol. 33, pp. 893-895DOI
17 
R. De Smedt, J. Van Bladel, 1986, Field Singularities at the Tip of a Metallic Cone of Arbitrary Cross Section, IEEE Trans. on Antennas Propag., Vol. 34, pp. 865-870DOI
18 
E. Vafiadis, J. N. Sahalos, 1984, Fields at the tip of an elliptic cone, Proceedings of the IEEE, Vol. 72, pp. 1089-1091DOI
19 
M. Bressan, P. Gamba, 1994, Analytical Expressions of Field Singularities at the Edge of Four Right Wedges, IEEE Microwave and Guided Wave Letters, Vol. 4, pp. 3-5DOI
20 
S. Marchetti, T. Rozzi, 1991, Electric field singularities at sharp edges of planar conductors, IEEE Trans. on Antennas Propag., Vol. 39, pp. 1312-1320DOI
21 
S. Marchetti, T. Rozzi, 1991, H-field and J-current singularities at sharp edges in printed circuits, IEEE Trans. On Antennas Propag., Vol. 39, pp. 1321-1331DOI
22 
S. Mikki, A. M. Alzahed, Y. M. M. Antar, 2019, The Spatial Singularity Expansion Method for Electromagnetics, IEEE Access, Vol. 7, pp. 124576-124595DOI
23 
E. Costamagna, 2000, Conformal Mapping and Field Singularities in Perfectly Conducting Wedge and Rotational Symmetry Structures, Microwave Opt. Technol. Lett., Vol. 24, pp. 191-195DOI
24 
R. De Smedt, J. Van Bladel, 1987, Field singularities near aperture corners, IEEE Proceedings, Vol. 134, pp. 694-698DOI
25 
R. Das, S. Ghosh, R. Chakraborty, 2015, Analysis of electric field for inclined electrodes and use of such configuration for generating tunable differential polarization phase, The European Physical Journal Applied Physics, Vol. 72, pp. 30501-9DOI
26 
Y. Xiang, 2006, The electrostatic capacitance of an inclined plate capacitor, Journal of Electrostatics, Vol. 64, pp. 29-34DOI
27 
Y. Xiang, 2008, Further study on electrostatic capacitance of an inclined plate capacitor, Journal of Electrostatics, Vol. 66, pp. 366-368DOI
28 
M. Zahn, 1979, Electromagnetic Field Theory: a problem solving approach, John Wiley & SonsDOI

์ €์ž์†Œ๊ฐœ

ํ•œ์ธ์ˆ˜ (In-Su Han)
../../Resources/kiee/KIEE.2023.72.12.1678/au1.png

In-Su Han was born in Seoul, Republic of Korea in 1975.

He received a BSc in electrical and electronic engineering from Korea Advanced Institute of Science and Technology in 1996.

He received Masters and PhD degrees in electrical engineering from Seoul National University in 1998 and 2005, respectively.

From 2005 to 2007, he was a senior researcher for Samsung SDI, studying electromagnetic simulation for PDPs (plasma display panels), FEDs (field emission displays), and etc.

Since 2007, he has been a senior research for Korea Railroad Research Institute, where he works as a principal researcher in the Railway Designated Certification Department Railway Test & Certification Division recently.

His research interests include electromagnetic field measurements, electromagnetic field simulation, electromagnetic interference & compatibility and analytic electromagnetic field theory.