Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of System Safety Research, Korea Railroad Research Institute, Korea E-mail : sej22@krri.re.kr)



Railway Safety, Artificial Intelligence, Optical Flow, Train Access Information, Object Detection

1. ์„œ ๋ก 

์ตœ๊ทผ ์˜ค๋ด‰์—ญ ์ž‘์—…์ž ์‚ฌ์ƒ์‚ฌ๊ณ (2022.11.5.), ๊ตฌ๋กœ์—ญ ์ž‘์—…์ž ์‚ฌ์ƒ์‚ฌ๊ณ (2024.08.09)์™€ ๊ฐ™์ด ์‚ฌํšŒ์  ํŒŒ์žฅ์ด ํฌ๊ณ  ์ข€์ฒ˜๋Ÿผ ์ค„์–ด๋“ค์ง€ ์•Š๋Š” ์ฒ ๋„ ์ข…์‚ฌ์ž ์‚ฌ๋ง์‚ฌ๊ณ ๋ฅผ ์„ ์ œ์ ์œผ๋กœ ์˜ˆ๋ฐฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ˜„์žฅ์—์„œ ๊ฐ„ํŽธํ•˜๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํœด๋Œ€์šฉ ์•ˆ์ „ ๋ณด์กฐ์‹œ์Šคํ…œ์˜ ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์ž‘์—…์ž ์ธ๋ช…์‚ฌ๊ณ ๋Š” ๋ฐœ์ƒ์‹œ ์ฒ ๋„๊ตํ†ต ์•ˆ์ „์„ฑ ์ €๊ฐ, ์šดํ–‰ ์ค‘๋‹จ์œผ๋กœ ์ธํ•œ ํ›„์† ํ”ผํ•ด ๋“ฑ ์‹ฌ๊ฐ๋„๊ฐ€ ๋†’์•„์„œ ์ ๊ทน์ ์ธ ๋Œ€์‘์ด ํ•„์š”ํ•˜๋‹ค. ํœด๋Œ€์šฉ ์•ˆ์ „ ๋ณด์กฐ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์ฒ ๋„ ์ž‘์—… ํ˜„์žฅ ํŠนํžˆ, ์šดํ–‰ ์ค‘์ธ ์—ด์ฐจ๊ฐ€ ์žˆ๋Š” ๊ตฌ๊ฐ„์˜ ์„ ๋กœ๋ณ€ ์ž‘์—…์‹œ ์—ด์ฐจ ์ ‘๊ทผ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฒ€์ถœํ•˜์—ฌ ์ž‘์—…์ž์—๊ฒŒ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์•Œ๋ฆผ์œผ๋กœ์จ ์ž‘์—…์ž ์‚ฌ๋ง์‚ฌ๊ณ ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ๋ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์•ˆ์ „ ๊ด€๋ฆฌ ๋ฐฉ์‹์€ ๊ฐ์‹œ ์ธ์›๊ณผ ์•ˆ์ „ ๋ณด์กฐ ์ธ์›์˜ ๋ฐฐ์น˜๋ฅผ ํ•„์ˆ˜๋กœ ์š”๊ตฌํ•˜์ง€๋งŒ, ์ด๋Š” ์ธ์ , ๊ฒฝ์ œ์  ์ž์›์ด ํฌ๊ฒŒ ์†Œ๋ชจ๋˜๋ฉฐ ๋น„ํšจ์œจ์ ์ด๋ผ๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ, ๋งŽ์€ ๊ธฐ์กด ์•ˆ์ „ ์‹œ์Šคํ…œ์ด ํ˜„์žฅ ์ž‘์—…์ž์˜ ์ทจ๊ธ‰์— ์˜์กดํ•˜๊ณ  ์žˆ์–ด ์ธ์  ์˜ค๋ฅ˜๋กœ ์ธํ•œ ์˜ค์ž‘๋™ ๊ฐ€๋Šฅ์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ์ด์— ๋”ฐ๋ผ ์‹ ๋ขฐ์„ฑ๊ณผ ์‚ฌ์šฉ ํŽธ์˜์„ฑ์„ ๊ฐ–์ถ˜ ์ƒˆ๋กœ์šด ์•ˆ์ „ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์ด ์ ˆ์‹คํ•˜๋ฉฐ, ํœด๋Œ€์šฉ ์•ˆ์ „ ๋ณด์กฐ์‹œ์Šคํ…œ์€ ๊ทธ ๋Œ€์•ˆ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ AI ์˜์ƒ ๋ถ„์„ ๊ธฐ๋ฐ˜์˜ ๊ฐ์ฒด ์ธ์‹ ๊ธฐ์ˆ ์ด ๋งค์šฐ ๊ณ ๋„ํ™”๋˜์–ด ์žˆ๊ณ , ์ด๋ฅผ ํ™œ์šฉํ•œ ๋„๋กœ ์ƒํƒœ์˜ ์ด์ƒ์œ ๋ฌด ๊ฒ€์ถœ ๋“ฑ์˜ ๊ธฐ์ˆ ์ด ๋ณด๊ธ‰๋˜์–ด ๊ตํ†ต ์•ˆ์ „ ์‹œ์Šคํ…œ ๋“ฑ์— ์ ์šฉ๋˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ์‹ค์‹œ๊ฐ„ ์ฒ ๋„ ์•ˆ์ „๊ด€์ œ์‹œ์Šคํ…œ[1-3]๊ณผ ์—ฐ๊ณ„ํ•˜์—ฌ ํ˜„์žฅ๊ณผ ์•ˆ์ „๊ด€์ œ ์‚ฌ์ด์˜ ํšจ๊ณผ์ ์ธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฐฉ์•ˆ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์–ด ์‹ค์‹œ๊ฐ„ ์•ˆ์ „๊ด€๋ฆฌ์™€ ์„ ์ œ์ ์ธ ์•ˆ์ „๊ด€๋ฆฌ์ฒด๊ณ„ ๊ตฌ์ถ•์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค.

2. ๋ณธ ๋ก 

2.1 ์ฒ ๋„ ์ข…์‚ฌ์ž ์•ˆ์ „ ํ˜„ํ™ฉ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ ์‚ฌ๋ก€

๊ทธ๋ฆผ 1๊ณผ ๊ทธ๋ฆผ 2๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ ์ง€๋‚œ 14๋…„ ๊ฐ„ ๋ฐœ์ƒํ•œ ์—ด์ฐจ์šดํ–‰ ์ค‘ ์ž‘์—…์ž ์‚ฌ๊ณ  ํ˜„ํ™ฉ์œผ๋กœ์„œ ๊พธ์ค€ํžˆ ๊ฐ์†Œํ•˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์ด์ง€๋งŒ ์•„์ง๋„ ๋งค๋…„ ์‚ฌ๋ง์ž, ๋ถ€์ƒ์ž๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. 14๋…„๊ฐ„ ์ž‘์—…์ž ์‚ฌ๊ณ ์ˆ˜๋Š” 487๊ฑด, ์‚ฌ๋ง์ž 74๋ช…, ๋ถ€์ƒ์ž 302๋ช…์ด๋‹ค. ์ด ์ค‘ ์ž‘์—…์ž ์—ด์ฐจ์น˜์ž„ ์‚ฌ๊ณ ์ˆ˜๋Š” 87๊ฑด, ์‚ฌ๋ง์ž 49๋ช…, ๋ถ€์ƒ์ž 48๋ช…์ด๋‹ค. ํŠนํžˆ ์ž‘์—…์ž ์—ด์ฐจ์น˜์ž„ ์‚ฌ๊ณ ๋กœ ์ธํ•œ ์‚ฌ๋ง์ž ์ˆ˜ ์ „์ฒด ํ†ต๊ณ„์—์„œ๋Š” ์•ฝ 71.43%๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ, ํ•œ๊ตญ์ฒ ๋„๊ณต์‚ฌ์˜ ๊ฒฝ์šฐ ์ž‘์—…์ž ์—ด์ฐจ ์น˜์ž„ ์‚ฌ๊ณ ๋กœ ์ธํ•œ ์‚ฌ๋ง์ž ์ˆ˜๋Š” ์ „์ฒด ์ž‘์—…์ž ์‚ฌ๋ง์‚ฌ๊ณ ์˜ 92.86%๋กœ ๋†’์€ ์ˆ˜์ค€์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค.

๊ณฝ์ƒ๋ก(2020)[4]์€ ์ž‘์—…์ž ์‚ฌ๋ง์˜ ๊ฐ€์žฅ ํฐ ์›์ธ์ธ ์„ ๋กœ์—์„œ ์ž‘์—… ์ค‘ ์—ด์ฐจ์— ์น˜์—ฌ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ์ž‘์—…์ž์™€ ์—ด์ฐจ ๊ฐ„์˜ ์ถฉ๋Œ ์›์ธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ ๊ด€๋ จ ์˜ˆ๋ฐฉ ์กฐ์น˜์˜ ํšจ๊ณผ์„ฑ๊ณผ ๋ณด์™„ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊น€๋™๋ช…(2023)[5]์€ ์ฐจ๋‹จ ์ž‘์—… ์Šน์ธ ์‹œ๊ฐ„์— ๋น„ํ•ด ์‹ค์ œ ์ž‘์—…์— ์†Œ์š”๋˜๋Š” ์‹œ๊ฐ„์ด ๊ธธ์–ด ์ž‘์—…์‹œ๊ฐ„์ด ๋ถ€์กฑํ•œ ์ ์ด ์•ˆ์ „ํ™•๋ณด๋ฅผ ์†Œํ™€ํžˆ ํ•œ ์ฑ„ ์ž‘์—…์— ๋ชฐ๋‘ํ•˜์—ฌ ์—ด์ฐจ์น˜์ž„์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ์›์ธ์œผ๋กœ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์šดํ–‰์„  ๋‚ด์—์„œ ์ด๋ฃจ์–ด์ง€๋Š” ์‹œ์„ค ๋ถ„์•ผ 5์ข…์˜ ์ž‘์—…์„ ์ธก์ •ยท๋ถ„์„ํ•ด ์‚ฐ์ถœ๋œ ํ‘œ์ค€์ž‘์—… ์‹œ๊ฐ„์„ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋กœ ๊ตฌ์ถ•ํ•˜์—ฌ ์ฐจ๋‹จ ์ž‘์—… ์Šน์ธ ์‹œ๊ฐ„ ๋ถ€์—ฌ ๊ธฐ์ค€์„ ๋งˆ๋ จํ•˜๋„๋ก ์ฐจ ์šดํ–‰์„  ์ž‘์—…์ž๋“ค์˜ ์‚ฐ์—…์žฌํ•ด ์˜ˆ๋ฐฉ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 1. ์ž‘์—…์ž ์‚ฌ๊ณ  ํ˜„ํ™ฉ

Fig. 1. Current Situation of โ€˜Accident to staffโ€™

../../Resources/kiee/KIEE.2024.73.10.1794/fig1.png

๊ทธ๋ฆผ 2. ์ž‘์—…์ž ์—ด์ฐจ ์ถฉ๋Œ ์‚ฌ๊ณ  ํ˜„ํ™ฉ

Fig. 2. Current Situation of โ€˜Staff hit by trainโ€™Accidents

../../Resources/kiee/KIEE.2024.73.10.1794/fig2.png

2.2 AI ์˜์ƒ๋ถ„์„ ๊ธฐ๋ฐ˜ ์—ด์ฐจ ์ ‘๊ทผ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜

2.2.1 ์—ด์ฐจ์ ‘๊ทผ ์˜์ƒ ์ทจ๋“

AI ์˜์ƒ๋ถ„์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ด์ฐจ ์„ ๋กœ์ƒ์—์„œ ์ดฌ์˜ํ•œ ์—ด์ฐจ์ ‘๊ทผ ์˜์ƒ์ด ํ•„์š”ํ•˜๋‹ค. ์„ ๋กœ์ƒ ์—ด์ฐจ์ ‘๊ทผ ์˜์ƒ ์ดฌ์˜์„ ์œ„ํ•ด ๋จผ ๊ฑฐ๋ฆฌ์˜ ์—ด์ฐจ ๊ฒ€์ถœ์ด ์šฉ์ดํ•˜๋„๋ก ๋ง์›๋ Œ์ฆˆ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”ํ›„์— ์‚ฌ์šฉํ•˜๊ฒŒ ๋  ๋ฌผ์ฒด ๊ฒ€์ถœ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ํ›ˆ๋ จ๋ฐ์ดํ„ฐ๋ฅผ ์ง€๋‹Œ ์ด๋ฏธ์ง€์ƒ์—์„œ์˜ ์—ด์ฐจ ํฌ๊ธฐ์™€ ์œ ์‚ฌํ•œ ํฌ๊ธฐ๋กœ ์ดฌ์˜๋˜๋„๋ก ๊ด‘ํ•™ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. Microsoft Common Objects in Context(MSCOCO)[6]๋Š” ๋ฌผ์ฒด ๊ฒ€์ถœ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ํ›ˆ๋ จ์— ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์•ฝ 20,000์žฅ์˜ ๋‹ค์–‘ํ•œ ์—ด์ฐจ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์œ ํ•œ๋‹ค. ์—ด์ฐจ์˜ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋Š” ํ‰๊ท ์ ์œผ๋กœ 341x201์ด๋ฉฐ ์—ด์ฐจ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ ํ‰๊ท  ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋Š” 577x484๋กœ ์ด๋ฏธ์ง€์—์„œ ์•ฝ 60%์˜ ํญ๊ณผ 40% ๋†’์ด๋ฅผ ์ง€๋…”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์—ด์ฐจ ๊ฒ€์ถœ์€ ๋จผ ๊ฑฐ๋ฆฌ์— ์žˆ๋Š” ์—ด์ฐจ๋ฅผ ๊ฒ€์ถœํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๊ธฐ์— ์ด๋ฏธ์ง€์ƒ์—์„œ ์—ด์ฐจ์˜ ํฌ๊ธฐ๊ฐ€ ํฌ๊ฒŒ ์ดฌ์˜๋˜์–ด์•ผ ํ•œ๋‹ค.

๊ทธ๋ฆผ 3. ์–‡์€ ๋ Œ์ฆˆ์— ๋Œ€ํ•œ ๊ธฐํ•˜๊ด‘ํ•™

Fig. 3. Geometrical Optics of Thin Lenses

../../Resources/kiee/KIEE.2024.73.10.1794/fig3.png
(1)
1do+1di=1f
(2)
hi=โˆ’didoho

์‹ (1)์€ ๋ Œ์ฆˆ ๋ฐฉ์ •์‹ ์‹์ด๊ณ  ์‹ (2)๋Š” ์ด๋ฏธ์ง€ ํ‰๋ฉด์ƒ์—์„œ ๋ฌผ์ฒด ๋†’์ด ์‹์ด๋‹ค. do๋Š” ๋ฌผ์ฒด์™€ ๋ Œ์ฆˆ ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ, di๋Š” ์ด๋ฏธ์ง€์™€ ๋ Œ์ฆˆ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ, f๋Š” ๋ Œ์ฆˆ์˜ ์ดˆ์ ๊ฑฐ๋ฆฌ, hi๋Š” ์ด๋ฏธ์ง€์ƒ์—์„œ์˜ ๋ฌผ์ฒด์˜ ๋†’์ด, ho๋Š” ๋ฌผ์ฒด์˜ ๋†’์ด์ด๋‹ค. ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” 3ฮผm ํ”ฝ์…€ ํฌ๊ธฐ์ธ CMOS ์„ผ์„œ์™€ ํ˜„์žฌ ์‚ฌ์šฉ๋˜๋Š” ์ดˆ์ ๊ฑฐ๋ฆฌ 3mm๋ฅผ ๊ฐ–๋Š” ๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฑฐ๋ฆฌ๊ฐ€ 300m ๋–จ์–ด์ ธ ์žˆ๋Š” ํญ 2.9m, ๋†’์ด 4.1m์ธ KTX ์ฐจ๋Ÿ‰์˜ ์ •๋ฉด ์ดฌ์˜์‹œ do๋Š” 300m, di๋Š” 0.003m, ho๋Š” 4.1m๋ฅผ ์‹ (2)์— ๋Œ€์ž…์‹œ hi๋Š” 41ฮผm์ด๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ด๋ฏธ์ง€์ƒ์—์„œ ํญ 29ฮผm/3ฮผm = 10pixel, ๋†’์ด 41ฮผm/3ฮผm = 14pixel์˜ ์‚ฌ์ด์ฆˆ๋กœ ์ด๋ฏธ์ง€์ƒ์— ๋ณด์ด๊ฒŒ ๋œ๋‹ค. 1280x720 ์ด๋ฏธ์ง€ ํฌ๊ธฐ์—์„œ ํญ 1%, ๋†’์ด 2%๋ฐ–์— ์ฐจ์ง€ํ•˜์ง€ ์•Š๊ธฐ์— ๋งค์šฐ ์ž‘์•„ ์—ด์ฐจ๋ฅผ ๊ฒ€์ถœํ•˜๋Š”๋ฐ ๋ถˆ๋ฆฌํ•˜๋‹ค. ์ดˆ์ ๊ฑฐ๋ฆฌ๊ฐ€ 100mm์ธ ๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด 455pixel์˜ ๋†’์ด๋ฅผ ์ง€๋‹ˆ๊ฒŒ ๋˜์–ด ์ด๋ฏธ์ง€ ์ƒ์—์„œ ์•ฝ 63%์˜ ๋†’์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋˜๊ณ , ์ดˆ์ ๊ฑฐ๋ฆฌ๊ฐ€ 75mm์ธ ๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด 341pixel ๋†’์ด๋กœ ์•ฝ 47.3%์˜ ๋†’์ด๋กœ ์ ‘๊ทผํ•˜๋Š” ์—ด์ฐจ๊ฐ€ ์ด๋ฏธ์ง€์ƒ์—์„œ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ดˆ์ ๊ฑฐ๋ฆฌ๊ฐ€ 50mm์ธ ๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉ ์‹œ 227pixel, 31.6% ๋†’์ด๊ฐ€ ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 1/3 inches CMOS์„ผ์„œ์™€ ์ดˆ์ ๊ฑฐ๋ฆฌ๊ฐ€ 50mm์ธ ๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฑฐ๋ฆฌ๊ฐ€ ์•ฝ 300m๊ฐ€ ๋˜๋Š” ๊ณณ์—์„œ ์ดฌ์˜๋œ ์—ด์ฐจ์˜ ์ •๋ฉด ๋†’์ด ๋น„์œจ์ด ํ•ด์ƒ๋„๊ฐ€ HD์—์„œ ์•ฝ 31%๊ฐ€ ๋˜๋„๋ก ํ•˜์—ฌ MSCOCO ๋ฐ์ดํ„ฐ์…‹์˜ ์—ด์ฐจ ๋†’์ด ๋น„์œจ์ด 40%์™€ ๋น„์Šทํ•˜๊ฒŒ ๋˜๋„๋ก ์„ค์ •ํ•˜์˜€๋‹ค. 75mm๋‚˜ 100mm ๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉํ•  ์‹œ ์—ด์ฐจ๊ฐ€ ์ ‘๊ทผํ•˜์˜€์„ ๋•Œ ์—ด์ฐจ๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ํ™•๋Œ€๋˜์–ด ๊ฒ€์ถœ ์„ฑ๋Šฅ์ด ๋‚ฎ์•„์งˆ ์ˆ˜ ์žˆ๊ณ , ์ˆ˜๊ด‘ ๋Šฅ๋ ฅ์ด ์ €ํ•˜ํ•˜์—ฌ ์•ผ๊ฐ„์—์„œ ๋ฐ๊ธฐ๊ฐ€ ๊ฐ์†Œํ•˜๊ธฐ์— ์ œ์™ธํ•˜์˜€๋‹ค.

2.2.2 AI ์˜์ƒ๋ถ„์„ ๊ธฐ๋ฐ˜ ๊ฐ์ฒด ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜

๋ฌผ์ฒด ๊ฒ€์ถœ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ ์ด๋ฏธ์ง€์ƒ์—์„œ ์—ด์ฐจ๊ฐ€ ๊ฒ€์ถœ๋˜์ง€ ์•Š์„ ์‹œ ๊ฒ€์ถœ์œจ์ด ๊ธ‰๊ฒฉํžˆ ํ•˜๋ฝํ•˜๊ฒŒ ๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๊ณ , ํŠนํžˆ ์•ผ๊ฐ„์˜ ๊ฒฝ์šฐ ์—ด์ฐจ์˜ ์ „์กฐ๋“ฑ๊ณผ ์กฐ๋„ ๋ถ€์กฑ์— ์˜ํ•ด ์—ด์ฐจ ๊ฒ€์ถœ์— ํ•„์š”ํ•œ ํŠน์ง•์„ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ์ถ”์ถœํ•˜๊ธฐ ์–ด๋ ค์›Œ ๋ฌผ์ฒด๋ฅผ ๊ฒ€์ถœํ•˜๋Š” ์„ฑ๋Šฅ์ด ๋”์šฑ ํ•˜๋ฝํ•œ๋‹ค. MSCOCO ๋ฐ์ดํ„ฐ์…‹์— ๋†’์€ ์„ฑ๋Šฅ์„ ์ง€๋‹Œ ์‹ค์‹œ๊ฐ„ ๋ฌผ์ฒด ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•œ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ํ‰๊ท  ์ •๋ฐ€๋„๋Š” 60% ๋ฏธ๋งŒ์ด๋ฏ€๋กœ, ๋ฌผ์ฒด๊ฐ€ ๊ฒ€์ถœ๋˜์ง€ ์•Š๋Š” ์ˆœ๊ฐ„๋“ค์ด ๋‹ค์ˆ˜ ์กด์žฌํ•˜๋ฏ€๋กœ ๋ฌผ์ฒด๊ฐ€ ๊ฒ€์ถœ๋˜์ง€ ์•Š๋”๋ผ๋„ ๋ฌผ์ฒด ์ ‘๊ทผ ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•œ ์—ด์ฐจ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํ•„์š”ํ•˜๋‹ค. ๊ทธ๋ฆผ 4๋Š” ๊ณ ๋„ํ™” ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ AI ์˜์ƒ๋ถ„์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ๋…์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ ์‹œ๊ฐ„์ฐจ๋ฅผ ๋‘๊ณ  ์ดฌ์˜ํ•œ ๊ณผ๊ฑฐ ์™€ ํ˜„์žฌ ์ด๋ฏธ์ง€๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต์ง€๋Šฅ์„ ํ†ตํ•ด ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•œ๋‹ค. ํ˜„์žฌ ์ด๋ฏธ์ง€์—์„œ ๋ฌผ์ฒด ๊ฒ€์ถœ ์ธ๊ณต์ง€๋Šฅ์œผ๋กœ ์—ด์ฐจ๋ฅผ ๊ฒ€์ถœ ๋ฐ ๋ ˆ์ด๋”๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ณด์™„์ ์œผ๋กœ ์›€์ง์ด๋Š” ๋ฌผ์ฒด ์ •๋ณด๋ฅผ ์ทจ๋“ ํ›„ ์„ธ ๊ฐ€์ง€ ์ •๋ณด๋ฅผ ์กฐํ•ฉํ•ด ์—ด์ฐจ ์ ‘๊ทผ์„ ํŒ๋‹จํ•œ๋‹ค.

๊ทธ๋ฆผ 4. ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ AI ์˜์ƒ๋ถ„์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋…๋„

Fig. 4. Concept Diagram of AI-Based Video Analysis Algorithm for Train Approach Detection

../../Resources/kiee/KIEE.2024.73.10.1794/fig4.png

๊ด‘ํ•™ ํ๋ฆ„(optical flow)์€ ๋‘ ์ด๋ฏธ์ง€์—์„œ ๋™์ผํ•œ ๋ฌผ์ฒด ํ˜น์€ ํ”ฝ์…€์˜ ์›€์ง์ž„์„ ์ด๋ฏธ์ง€์ƒ์—์„œ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ด๋ฏธ์ง€์˜ ๊ฐ ํ”ฝ์…€์—์„œ ์ˆ˜์ง, ์ˆ˜ํ‰ ๋ฐฉํ–ฅ ๋ณ€ํ™”๋Ÿ‰์„ ๊ฐ’์œผ๋กœ ๊ฐ€์ง„๋‹ค. ๊ทธ๋ฆผ 5๋Š” ๋‘ ์ด๋ฏธ์ง€์—์„œ ๋™์ผํ•œ ๋ฌผ์ฒด A์— ๋Œ€ํ•œ ๊ด‘ํ•™ ํ๋ฆ„์„ ๋‚˜ํƒ€๋‚ด๋Š” ์˜ˆ์‹œ๋กœ, Frame 1์—์„œ A๋Š” (x1, y1)์—, Frame 2์—์„œ๋Š” (x2, y2)์— ์œ„์น˜ํ•œ๋‹ค. ๋‘ ์ด๋ฏธ์ง€์ƒ์—์„œ A์˜ ์œ„์น˜ ๋ณ€ํ™”๋Š” Frame 1์„ ๊ธฐ์ค€์œผ๋กœ (x2-x1, y2-y1)์ด๋ฉฐ, Frame 1์˜ A ์œ„์น˜์ธ (x1, y1)์—์„œ ํ•ด๋‹น ๊ฐ’์„ ๊ฐ–๋„๋ก ๊ด‘ํ•™ ํ๋ฆ„ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ตฌ์„ฑํ•œ๋‹ค. ๊ทธ๋ฆผ 6์€ ์˜์ƒ์—์„œ ์งง์€ ์‹œ๊ฐ„ ์ฐจ๋กœ ์ถ”์ถœํ•œ ๋‘ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•ด ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์‹ค์ œ ๊ด‘ํ•™ ํ๋ฆ„ ๋ฐ์ดํ„ฐ๋Š” 2์ฑ„๋„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด 8-bit๋ณด๋‹ค ํฐ ๊ฐ’์„ ์ง€๋‹ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ง์ ‘์ ์œผ๋กœ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์—†์ง€๋งŒ ์ •๊ทœํ™” ๋“ฑ ๊ณผ์ •์„ ๊ฑฐ์นœ ๋’ค ์ด๋™ ๋ฐฉํ–ฅ๊ณผ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์ƒ‰์„ ์ ์šฉํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 7์€ ์ดฌ์˜๋œ ์—ด์ฐจ์ ‘๊ทผ ์˜์ƒ์„ ์ด์šฉํ•ด ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•œ ๊ฒฐ๊ณผ๋กœ ์ ‘๊ทผ ์—ด์ฐจ ์—†์„ ์‹œ ๋‘ ์ด๋ฏธ์ง€ ์‚ฌ์ด ๋ณ€ํ™”๊ฐ€ ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š์•„ ๋…ธ์ด์ฆˆ์ฒ˜๋Ÿผ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์—ด์ฐจ๊ฐ€ ์ ‘๊ทผ ์‹œ ์ถ”์ •๋œ ๊ด‘ํ•™ ํ๋ฆ„์œผ๋กœ ์—ด์ฐจ๊ฐ€ ์กด์žฌํ•˜๊ณ  ์›€์ง์ธ ์œ„์น˜์— ๊ด‘ํ•™ ํ๋ฆ„์ด ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋˜์–ด ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๊ทธ๋ฆผ 5. ๊ด‘ํ•™ ํ๋ฆ„ ์˜ˆ์‹œ

Fig. 5. Example of Optical Flow

../../Resources/kiee/KIEE.2024.73.10.1794/fig5.png

๊ทธ๋ฆผ 6. ์‹ค์ œ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ • ๊ฒฐ๊ณผ

Fig. 6. Optical Flow Estimation Results on Actual Images

../../Resources/kiee/KIEE.2024.73.10.1794/fig6.png

๊ทธ๋ฆผ 7. ์—ด์ฐจ ์ ‘๊ทผ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ๊ด‘ํ•™ ํ๋ฆ„ ์ฐจ์ด

Fig. 7. Optical Flow Differences Depending on Train Approach

../../Resources/kiee/KIEE.2024.73.10.1794/fig7.png

์‹ฌ์ธต ํ•™์Šต ์ด์ „์˜ ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ •์€ Lucas-Kanade ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. Lucas-Kanade ๋ฐฉ๋ฒ•์€ ๋‘ ์ด๋ฏธ์ง€ ๊ฐ„์˜ ํ๋ฆ„์ด ๊ธฐ๋ณธ์ ์œผ๋กœ ์ผ์ •ํ•˜๋‹ค๋Š” ๊ฐ€์ •์œผ๋กœ ์‹ฌ์ธต ํ•™์Šต ์ด์ „์˜ ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•˜์˜€๋‹ค. ๋‘ ์ด๋ฏธ์ง€ ๊ฐ„ ๋ฐ๊ธฐ๊ฐ€ ๋ณ€ํ•˜์ง€ ์•Š๊ณ , ์–ด๋–ค ํ”ฝ์…€ ์ฃผ๋ณ€์€ ์œ ์‚ฌ ๋™์ž‘์„ ๊ฐ€์ • ํ›„ ๊ฐ ์ด๋ฏธ์ง€์— ๋ชจ์„œ๋ฆฌ, ๊ผญ์ง“์ ๊ณผ ๊ฐ™์€ ๋‘๋“œ๋Ÿฌ์ง„ ํŠน์ง•์„ ์ถ”์ถœ ํ›„ ๋‘ ์ด๋ฏธ์ง€ ๊ฐ„ ๋™์ผ ์‹œ ์—ฌ๊ฒจ์ง€๋Š” ํŠน์ง•์„ ์ง์ง€์–ด ์œ„์น˜ ์ฐจ์ด๋ฅผ ์ด์šฉํ•ด ํ๋ฆ„์„ ์ถ”์ •ํ•˜์˜€๋‹ค. ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์œˆ๋„์šฐ๋ฅผ ์ ์šฉํ•ด ์—ฐ์‚ฐ์„ ์ง„ํ–‰ํ•˜๊ธฐ์— ์œˆ๋„์šฐ ํฌ๊ธฐ๋ณด๋‹ค ํฐ ์›€์ง์ž„์€ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์‹คํŒจํ•˜๊ณ , ์œˆ๋„์šฐ ํฌ๊ธฐ๊ฐ€ ์ปค์งˆ ์‹œ ์—ฐ์‚ฐ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ํŠน์ง•์ ์„ ํ†ตํ•ด ์ถ”์ •ํ•ด ์ตœ๊ทผ ์ด๋ฏธ์ง€ ์ „์—ญ์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ •ํ™•๋„๊ฐ€ ๋‚ฎ๋‹ค. ์‹ฌ์ธต ํ•™์Šต ์ดํ›„, FlowNet[7]์ดํ›„ ์ˆ˜๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. FlowNet์€ ์ฒ˜์Œ์œผ๋กœ ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ •์„ ์‹ฌ์ธต ํ•™์Šต์„ ์ด์šฉํ•ด ํ•ด๊ฒฐํ•œ ์„ฑ๊ณต์ ์ธ ์—ฐ๊ตฌ๋กœ FlowNet 2.0[8]์œผ๋กœ ๋ฐœ์ „ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 8์€ FlowNet์˜ ๋‘ ๊ฐ€์ง€ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. FlowNetSimple์€ FlowNetCorr์— ๋น„ํ•ด ๊ฐ„์†Œํ™”๋œ ๊ตฌ์กฐ๋กœ ๋‘ ์ด๋ฏธ์ง€๋ฅผ ์ฑ„๋„ ๋ฐฉํ–ฅ์œผ๋กœ ํ•ฉ์ณ ๋ชจ๋ธ์— ์ž…๋ ฅ ํ›„, ํ•˜๋‚˜์˜ convolutional block์—์„œ ํŠน์ง•์„ ์ถ”์ถœํ•œ๋‹ค. FlowNetCorr์€ ๋‘ ์ด๋ฏธ์ง€๋ฅผ ๋‘ ๊ฐœ์˜ ๋…๋ฆฝ๋œ convolutional block์— ์ž…๋ ฅํ•ด ํŠน์ง• ์ถ”์ถœ ํ›„ correlation layer๋ฅผ ํ†ตํ•ด ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•œ๋‹ค. FlowNetSimple ๊ตฌ์กฐ์˜ ๊ฒฝ์šฐ ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘๊ธฐ์— ๋น ๋ฅธ ์†๋„๋กœ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ž…๋ ฅ ์ด๋ฏธ์ง€ ๊ฐ„์˜ ์›€์ง์ž„์ด ํด ๊ฒฝ์šฐ ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ • ์˜ค์ฐจ๊ฐ€ ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. FlowNet 2.0์€ FlowNetSimple๊ณผ FlowNetCorr์„ ํ•ฉ์ณ ๋ชจ๋“  ๋ณ€์œ„์— ์ตœ์ ํ™”๋œ ๊ตฌ์กฐ๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๊ทธ๋ฆผ 9๋Š” FlowNet2.0์˜ ๊ตฌ์กฐ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ํฐ ๋ณ€์œ„ ๊ด‘ํ•™ ํ๋ฆ„์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ FlowNetC์—์„œ ์ฒ˜๋ฆฌ ํ›„ ๋‹ค์‹œ ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ์›Œํ”„ ๋œ ์ด๋ฏธ์ง€, ๊ด‘ํ•™ ํ๋ฆ„, ๋ฐ๊ธฐ ์—๋Ÿฌ๋ฅผ ํ†ตํ•ฉํ•ด FlowNetS์— ์ž…๋ ฅํ•œ๋‹ค. ์ž‘์€ ๋ณ€์œ„ ๊ด‘ํ•™ ํ๋ฆ„์€ FlowNet-SD๋ฅผ ์ ์šฉ ํ›„ ํฐ ๋ณ€์œ„, ์ž‘์€ ๋ณ€์œ„ ์œตํ•ฉํ•ด ์ตœ์ข… ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถœ๋ ฅํ•œ๋‹ค. ์—ฌ๋Ÿฌ FlowNet์„ ์กฐํ•ฉํ•ด ํ•˜๋‚˜์˜ ๋ชจ๋ธ๋กœ ๊ตฌ์„ฑํ–ˆ๊ธฐ์— ์—ฐ์‚ฐ์†๋„๋Š” ์•ฝ 8๋ฐฐ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉฐ ๊ทธ๋ฆผ 10์€ FlowNet๊ณผ FlowNet2.0 ๋น„๊ต์‹œ FlowNet2.0์ด ํ›จ์”ฌ ๋” ๋†’์€ ํ’ˆ์งˆ์„ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 8. FlowNetSimple(์ƒ๋ถ€), FlowNetCorr(ํ•˜๋ถ€)[7]

Fig. 8. FlowNetSimple(Upper), FlowNetCorr(Lower)[7]

../../Resources/kiee/KIEE.2024.73.10.1794/fig8.png

๊ทธ๋ฆผ 9. FlowNet 2.0 ๊ตฌ์กฐ[8]

Fig. 9. FlowNet 2.0 Structure[8]

../../Resources/kiee/KIEE.2024.73.10.1794/fig9.png

๊ทธ๋ฆผ 10. FlowNet๊ณผ FlowNet 2.0 ๋น„๊ต

Fig. 10. Comparison of FlowNet and FlowNet 2.0

../../Resources/kiee/KIEE.2024.73.10.1794/fig10.png

์„ฑ๋Šฅ ์œ ์ง€ ๋ฐ ํ–ฅ์ƒ, ์ถ”๋ก  ์†๋„ ๊ฐ€์†์„ ์œ„ํ•ด PWC-Net[9], LiteFlow[10] ๋“ฑ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋‹ค. PWC-Net์€ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ์™€ ํŠน์ง• ํ”ผ๋ผ๋ฏธ๋“œ๋ฅผ ์ด์šฉํ•ด ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ, LiteFlowNet์€ ํŠน์ง• ํ”ผ๋ผ๋ฏธ๋“œ์™€ ๋ถ„๋ฆฌ๋œ ํ๋ฆ„ ์ถ”๋ก  ๋ฐ ํ๋ฆ„ ์ •๊ทœํ™”๋ฅผ ๋„์ž…ํ•œ๋‹ค. ๊ทธ๋ฆผ 11๊ณผ ๊ทธ๋ฆผ 12๋Š” ๊ฐ๊ฐ PWC-Net์˜ ๋™์ž‘ ๊ตฌ์กฐ์™€ LiteFlowNet์˜ ๋™์ž‘ ๊ฐœ๋…์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.

๊ทธ๋ฆผ 11. PWC-Net[9]

Fig. 11. PWC-Net[9]

../../Resources/kiee/KIEE.2024.73.10.1794/fig11.png

๊ทธ๋ฆผ 12. LiteFlowNet[10]

Fig. 12. LiteFlowNet[10]

../../Resources/kiee/KIEE.2024.73.10.1794/fig12.png

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ถ”๋ก  ์†๋„๊ฐ€ ๋น ๋ฅธ ๋ชจ๋ธ ์ค‘ ์ตœ๊ทผ ๋ฐœํ‘œํ•œ FastFlowNet[11]์„ ์ด์šฉํ•ด ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•˜์˜€๋‹ค, FastFlowNet์€ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ ์ถ”์ถœ์„ ์œ„ํ•ด head enhanced pooling pyramid(HEPP), ๊ฐ€๋ฒผ์šด compact volume์„ ๊ฑด์„คํ•˜๊ธฐ ์œ„ํ•ด center dense dilated correlation(CDDC) layer, ํ๋ฆ„ ์ถ”์ • ๊ฐ€์†์— ํšจ์œจ์ ์ธ shuffle block decoder(SBD)๋ฅผ ๊ฐ๊ฐ์˜ ํ”ผ๋ผ๋ฏธ๋“œ ๋ ˆ๋ฒจ์— ์ ์šฉํ•˜์—ฌ ์ •ํ™•๋„๋ฅผ ์œ ์ง€, ๋น ๋ฅธ ์ถ”๋ก  ์†๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ํ‘œ 1์€ ๋‹ค๋ฅธ ์—ฐ๊ตฌ์™€ ๋น„๊ตํ‘œ์ด๋ฉฐ, FastFlowNet์˜ ๊ฐ€์ค‘์น˜ ์ˆ˜์™€ ์—ฐ์‚ฐ๋Ÿ‰, ์ถ”๋ก  ์‹œ๊ฐ„์ด ๊ฐ€์žฅ ์ž‘์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 13. FastFlowNet ๊ตฌ์กฐ[11]

Fig. 13. FastFlowNet Structure[11]

../../Resources/kiee/KIEE.2024.73.10.1794/fig13.png

ํ‘œ 1 FastFlowNet ์„ฑ๋Šฅ ๋น„๊ต[6]

Table 1 FastFlowNet Performance Comparison[6]

Sintel Clean Test (AEPE)

KITTI 2015 Test (Fl-all)

Params (M)

FLOPs (G)

Time (ms) 1080Ti

Time (ms) TX2

FlowNet2

4.16

11.48%

162.52

24836.4

116

1547

SPyNet

6.64

35.07%

1.20

149.8

50

918

PWC-Net

4.39

9.60%

8.75

90.8

34

485

LiteFlowNet

4.54

9.38%

5.37

163.5

55

907

FastFlowNet

4.89

11.22%

1.37

12.2

11

176

๋ฌผ์ฒด ๊ฒ€์ถœ AI ๋ชจ๋ธ์ธ YOLOv7[12]์€ ๋งค์šฐ ๋†’์€ ์„ฑ๋Šฅ, ์ถ”๋ก  ์†๋„๋ฅผ ๊ฐ€์ง„ ๋ฌผ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ๋กœ TensorRT์™€ ๊ฐ™์€ GPU ๊ฐ€์†ํ™” ์ง€์›ํ•˜์—ฌ ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ ๋น ๋ฅธ ์ถ”๋ก  ์†๋„๋ฅผ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” MSCOCO ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ›ˆ๋ จ๋œ YOLOv7 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๊ณ , YOLOv7์€ ์•ฝ 104 GFLOPs์˜ ์—ฐ์‚ฐ๋Ÿ‰์ด ์š”๊ตฌ๋˜๋ฉฐ, MSCOCO val ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด 51.2%์˜ ํ‰๊ท  ์ •๋ฐ€๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด์™€ ๋น„์Šทํ•œ ์—ฐ์‚ฐ๋Ÿ‰์„ ์ง€๋‹Œ YOLOv7-L[8]์˜ ๊ฒฝ์šฐ 49%, PPTOLOE-L[9]์€ 50.9%, YOLOR-CSP[10]๋Š” 50.8%๋กœ YOLOv7์˜ ์„ฑ๋Šฅ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋†’๋‹ค. YOLOv7-tiny-SiLU ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ 13.8 GFLOPs์˜ ์—ฐ์‚ฐ๋Ÿ‰์œผ๋กœ ๋งค์šฐ ๋น ๋ฅธ ์ถ”๋ก  ์†๋„๋ฅผ ๋‚˜ํƒ€๋‚ด์ง€๋งŒ 38.7%์˜ ํ‰๊ท ์ •๋ฐ€๋„๋กœ ์„ฑ๋Šฅ์ €ํ•˜๊ฐ€ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ทธ๋ฆผ 14์—์„œ๋Š” YOLOv7๊ณผ ๋‹ค๋ฅธ ๋ฌผ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ๊ณผ์˜ ์„ฑ๋Šฅ ๋ฐ ์†๋„๋ฅผ ๋„์‹ํ™”ํ•˜์—ฌ ๋น„๊ตํ•˜๊ณ  ์žˆ๋‹ค.

2.2.3 ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ • AI ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์—ด์ฐจ ์ ‘๊ทผ ํŒ๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜

๊ทธ๋ฆผ 15๋Š” ์—ด์ฐจ์ ‘๊ทผ ํŒ๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆœ์„œ๋„๋กœ ์—ด์ฐจ์ ‘๊ทผ ํŒ๋‹จ์„ ์œ„ํ•ด ๊ด‘ํ•™ ํ๋ฆ„(OF) ์ •๋ณด, ๋ฌผ์ฒด ๊ฒ€์ถœ ์ •๋ณด, ๋ ˆ์ด๋” ์ •๋ณด๋ฅผ ์ด์šฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆœ์„œ๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ณผ๊ฑฐ, ํ˜„์žฌ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•ด ์ถ”์ •๋œ ๊ด‘ํ•™ ํ๋ฆ„์˜ ์ ˆ๋Œ“๊ฐ’์ด ๋ฌธํ„ฑ๊ฐ’ T๋ฅผ ์ดˆ๊ณผํ•˜๊ณ , ์ด๋ ‡๊ฒŒ ์ดˆ๊ณผํ•œ ๊ด‘ํ•™ ํ๋ฆ„์˜ ๋„“์ด๊ฐ€ A๋ฅผ ์ดˆ๊ณผ ์‹œ ์—ด์ฐจ๊ฐ€ ์ ‘๊ทผ ์ค‘์ธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•œ๋‹ค. ๊ณผ๊ฑฐ, ํ˜„์žฌ ์ด๋ฏธ์ง€๋Š” ์•ฝ 1์ดˆ ์ฐจ์ด๋ฅผ ๋‘๊ณ  ์˜์ƒ์—์„œ ์ถ”์ถœ๋˜์—ˆ๋‹ค. ๋‘ ์ด๋ฏธ์ง€ ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ฑฐ์˜ ์—†๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ๊ด‘ํ•™ ํ๋ฆ„ ๋…ธ์ด์ฆˆ์˜ ํ‰๊ท ์€ 0~2 ์‚ฌ์ด์˜ ์ ˆ๋Œ“๊ฐ’์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ์—ด์ฐจ๊ฐ€ ์ ‘๊ทผํ•  ๊ฒฝ์šฐ ๊ด‘ํ•™ ํ๋ฆ„์€ 20~200 ์‚ฌ์ด ์ ˆ๋Œ“๊ฐ’์„ ๋‚˜ํƒ€๋‚ด๊ธฐ์— ๊ด‘ํ•™ ํ๋ฆ„ ์ ˆ๋Œ“๊ฐ’์— ๋Œ€ํ•œ ๋ฌธํ„ฑ๊ฐ’ T๋Š” 10์œผ๋กœ ์„ค์ •, ๊ด‘ํ•™ ํ๋ฆ„์˜ ๋„“์ด์— ๋Œ€ํ•œ ๋ฌธํ„ฑ๊ฐ’ A๋ฅผ 200์œผ๋กœ ์„ค์ •ํ•˜์—ฌ ์ž‘์€ ๋ฌผ์ฒด๋‚˜ ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ์ œ์™ธํ•œ๋‹ค. ๋ฌผ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์€ ๊ด‘ํ•™ ํ๋ฆ„์—์„œ ๊ฒ€์ถœ๋œ ์›€์ง์ž„์ด ์—ด์ฐจ์— ์˜ํ•œ ๊ฒƒ์ธ์ง€ ํŒ๋‹จํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์—ด์ฐจ๊ฐ€ ์•„๋‹Œ ๋‹ค๋ฅธ ๋ฌผ์ฒด๊ฐ€ ๊ฒ€์ถœ๋  ๊ฒฝ์šฐ ํ•ด๋‹น ๋ฌผ์ฒด์˜ ์œ„์น˜์— ๋Œ€ํ•œ ๊ด‘ํ•™ ํ๋ฆ„ ๊ฐ’์„ ์ œ๊ฑฐํ•œ ๋’ค ๊ด‘ํ•™ ํ๋ฆ„์„ ์ฒ˜๋ฆฌํ•˜์—ฌ ๋‹ค๋ฅธ ๋ฌผ์ฒด์˜ ์˜ํ–ฅ์„ ์ œ์™ธํ–ˆ๋‹ค. ์—ด์ฐจ๊ฐ€ ๊ฒ€์ถœ๋  ์‹œ ์—ด์ฐจ์ ‘๊ทผ ์ตœ์ข… ํŒ๋‹จ์— ์ ์šฉํ•˜์˜€๊ณ , ๋ง์›๋ Œ์ฆˆ๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋˜๋ฉด์„œ ๋ ˆ์ด๋” ์‹œ์•ผ๋Š” ์นด๋ฉ”๋ผ๋ณด๋‹ค ๋„“์–ด์ง€๊ฒŒ ๋˜์—ˆ์ง€๋งŒ ์นด๋ฉ”๋ผ ์™ธ๋ถ€ ๋ฌผ์ฒด๊นŒ์ง€ ๋ ˆ์ด๋”์— ๊ฒ€์ถœ๋˜๊ธฐ์— ๋ ˆ์ด๋” ์‹œ์•ผ๋ฅผ ์นด๋ฉ”๋ผ ์‹œ์•ผ์— ๋งž์ถฐ ์ œํ•œํ•ด์•ผ ํ•œ๋‹ค. ์˜์ƒ ์ดฌ์˜์— ์‚ฌ์šฉํ•œ ๊ด‘ํ•™ ์‹œ์Šคํ…œ์€ 50mm ๋ Œ์ฆˆ์™€ 1/3 inches ์„ผ์„œ๋กœ ์•ฝ 5.5ยฐ์˜ ์ˆ˜ํ‰ ์‹œ์•ผ๋ฅผ ์ง€๋‹ˆ๊ณ  ์—ฌ๊ธฐ์— ๋งž์ถฐ ๋ ˆ์ด๋”์— ๊ฒ€์ถœ๋œ ๋ฌผ์ฒด์˜ ์œ„์น˜๊ฐ€ ์ขŒ์šฐ 2.75ยฐ ์ดˆ๊ณผ์‹œ ์—ด์ฐจ์ ‘๊ทผ ํŒ๋‹จ์— ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜๋‹ค.

๊ทธ๋ฆผ 14. YOLOv7๊ณผ ๋‹ค๋ฅธ ๋ชจ๋ธ๋“ค์˜ ์„ฑ๋Šฅ ๋ฐ ์†๋„ ๋น„๊ต[8]

Fig. 14. Comparison of YOLOv7 and Other Models in Terms of Performance and Speed[8]

../../Resources/kiee/KIEE.2024.73.10.1794/fig14.png

๊ทธ๋ฆผ 15. ์—ด์ฐจ ์ ‘๊ทผ ํŒ๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆœ์„œ๋„

Fig. 15. Flowchart of the Train Approach Detection Algorithm

../../Resources/kiee/KIEE.2024.73.10.1794/fig15.png

3. ์‹ค ํ—˜

3.1 ์‹คํ—˜์‹ค ํ™˜๊ฒฝ ์‹คํ—˜

์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ ๊ฒ€์ฆ์„ ์œ„ํ•ด ๊ทธ๋ฆผ 16๊ณผ ๊ฐ™์ด YouTube ์—ด์ฐจ์ ‘๊ทผ ์˜์ƒ์„ ํ™œ์šฉํ•ด ๊ฐœ๋ฐœํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ์œจ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์˜ ๊ฒฝ์šฐ ๋ ˆ์ด๋” ๋ฐ์ดํ„ฐ๋Š” ํ™œ์šฉํ•  ์ˆ˜ ์—†์–ด ๋ ˆ์ด๋” ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋ถ€๋ถ„์€ ์ œ์™ธํ•˜์˜€๋‹ค. ํ‰๊ฐ€์ง€ํ‘œ์ธ ๊ฒ€์ถœ์œจ์€ ์žฌํ˜„์œจ(Recall)์ด๋ผ ํ•˜๋ฉฐ, ์ „์ฒด ๊ฒ€์ถœ ๋Œ€์ƒ ์ค‘ ์‹ค์ œ ๊ฒ€์ถœ๋œ ๋Œ€์ƒ์˜ ๋น„์œจ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(3)
True (T)=TP+F
(4)
Detection Rate=TP/(TP+FN)
(5)
Accuracy= TP/(TP+FP)

์‹ (3)์€ ์ „์ฒด ๊ฒ€์ถœ ๋Œ€์ƒ ์ˆ˜, ์‹ (4)๋Š” ๊ฒ€์ถœ์œจ, ์‹ (5)๋Š” ์ •๋ฐ€๋„ ์‹์ด๋‹ค. ์—ฌ๊ธฐ์„œ TP๋Š” True Positive์ด๋ฉฐ ๊ฒ€์ถœ ๋Œ€์ƒ์„ ๊ฒ€์ถœํ•œ ์ˆ˜, FN์€ False Negative๋กœ ๊ฒ€์ถœ ๋Œ€์ƒ์„ ๊ฒ€์ถœํ•˜์ง€ ๋ชปํ•œ ์ˆ˜, FP๋Š” False Positive๋กœ ๊ฒ€์ถœ ๋Œ€์ƒ์ด ์•„๋‹Œ๋ฐ ๊ฒ€์ถœํ•œ ๊ฒฝ์šฐ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์‹คํ—˜์‹ค ํ™˜๊ฒฝ ๊ฒ€์ถœ์œจ ํ‰๊ฐ€ ์‹œํ—˜๊ฒฐ๊ณผ๋Š” ์œ„ ์‹๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋„์ถœ๋œ ๊ฐ’์œผ๋กœ ํ‘œ 2์— ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ฃผ๊ฐ„ ์˜์ƒ๊ณผ ์•ผ๊ฐ„์˜์ƒ ๊ฐ 20๊ฐœ์˜ ์˜์ƒ ์ค‘ 10๊ฐœ์˜ ์˜์ƒ๋งŒ์ด ์—ด์ฐจ๊ฐ€ ์กด์žฌํ•˜๋Š” ์˜์ƒ์ด๋‹ค. ์ฃผ๊ฐ„๊ณผ ์•ผ๊ฐ„ ๋ชจ๋‘ ๊ฒ€์ถœ์œจ์ด ๋ชฉํ‘œ์น˜์ธ 100%๋ฅผ ๋‹ฌ์„ฑํ–ˆ๋‹ค. ๊ทธ๋ฆผ 17์€ YouTube์—์„œ ์—ด์ฐจ ์ง„์ž… ์˜์ƒ์„ ํ™œ์šฉํ•ด ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ๊ฐœ๋ฐœํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ์ฃผ๊ฐ„ ์˜์ƒ์˜ ๊ฒฝ์šฐ ๋ฌผ์ฒด ๊ฒ€์ถœ ๋ชจ๋ธ์ด, ์•ผ๊ฐ„ ์˜์ƒ์˜ ๊ฒฝ์šฐ ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ • ๋ชจ๋ธ์ด ์ž˜ ์ž‘๋™ํ•˜์—ฌ ์—ด์ฐจ์ ‘๊ทผ์„ ๊ฒ€์ถœํ–ˆ๋‹ค. YouTube ์˜์ƒ ๋Œ€๋ถ€๋ถ„ ๊ฐ์‹œ์นด๋ฉ”๋ผ, ์Šค๋งˆํŠธํฐ์œผ๋กœ ์ดฌ์˜ํ•ด ๊ด‘๊ฐ๋ Œ์ฆˆ๋กœ ์ดฌ์˜๋˜์—ˆ๊ธฐ์— ์—ด์ฐจ๊ฐ€ ๊ทผ์ ‘ํ•˜์ง€ ์•Š์œผ๋ฉด ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ •์ด ์ž˜ ๋˜์ง€ ์•Š๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚œ๋‹ค. ์•ผ๊ฐ„ ์˜์ƒ์˜ ๊ฒฝ์šฐ ์†์œผ๋กœ ์ง์ ‘ ๋“ค๊ณ  ์ดฌ์˜ ๋ฐ ์—ด์ฐจ์— ๋”ฐ๋ผ ๋ฐ”๋€Œ๋Š” ์‹œ์•ผ ๋•Œ๋ฌธ์— ์˜์ƒ ์ „์ฒด์ ์œผ๋กœ ๊ด‘ํ•™ ํ๋ฆ„์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๊ทธ๋ฆผ 16. ์‹คํ—˜์‹ค ํ™˜๊ฒฝ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ(YouTube)

Fig. 16. Laboratory Environment Verification Data (YouTube)

../../Resources/kiee/KIEE.2024.73.10.1794/fig16.png

ํ‘œ 2 ์‹คํ—˜์‹ค ํ™˜๊ฒฝ ๊ฒ€์ถœ์œจ ํ‰๊ฐ€

Table 2 Evaluation of Detection Rate in Laboratory Environment

Number of Videos

Detection Rate

Accuracy

Daytime

20(Train Presence 10)

100%

71.4%

Nighttime

20(Train Presence 10)

100%

69.0%

๊ทธ๋ฆผ 17. ์‹คํ—˜์‹ค ํ™˜๊ฒฝ ์‹œํ—˜ ๊ฒฐ๊ณผ(YouTube)

Fig. 17. Laboratory Environment Test Results (YouTube)

../../Resources/kiee/KIEE.2024.73.10.1794/fig17.png

3.2 ์ฒ ๋„ ํ˜„์žฅ ์‹คํ—˜

์‹ค์ œ ์—ด์ฐจ๊ฐ€ ์šดํ–‰ํ•˜๋Š” ํ˜„์žฅ์—์„œ์˜ ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ์œจ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ์œ„ํ•ด ์˜ค์†ก ์‹œํ—˜์„ ๋กœ์™€ ์–‘ํ‰์—ญ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฃผ๊ฐ„ ์˜์ƒ 84๊ฐœ, ์•ผ๊ฐ„ ์˜์ƒ 72๊ฐœ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ ์ฃผ๊ฐ„ ์˜์ƒ ์ค‘ 41๊ฐœ, ์•ผ๊ฐ„ ์˜์ƒ 33๊ฐœ๋งŒ์ด ์—ด์ฐจ๊ฐ€ ์กด์žฌํ•˜๋Š” ์˜์ƒ์ด๋‹ค. ๊ฒ€์ถœ์œจ ๋ชฉํ‘œ์น˜์ธ 100% ๋‹ฌ์„ฑ์— ์„ฑ๊ณตํ–ˆ์ง€๋งŒ, ์ •๋ฐ€๋„๋Š” ๊ฒ€์ถœ์œจ์— ๋น„ํ•ด์„œ๋Š” ์•ฝ 30% ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์—ด์ฐจ๊ฐ€ ์กด์žฌํ•  ๋•Œ ๋ฐ˜๋“œ์‹œ ์—ด์ฐจ๋ฅผ ๊ฒ€์ถœํ•ด๋‚ด์•ผ ์•ˆ์ „ํ•˜๊ธฐ์— ๋ฌธํ„ฑ๊ฐ’์„ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๊ฒŒ ์„ค์ •ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋ฆผ 18๋Š” ์ฃผ๊ฐ„์— ์ง„ํ–‰ํ•œ ํ˜„์žฅ ์‹œํ—˜ ๊ฒฐ๊ณผ์˜ ์ผ๋ถ€์ด๋‹ค. ์ขŒ์ธก์—์„œ ์šฐ์ธก ์ˆœ์„œ๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ๊ฐ ํ–‰์€ ํ•˜๋‚˜์˜ ์˜์ƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ด‘ํ•™ ํ๋ฆ„์œผ๋กœ๋ถ€ํ„ฐ ๊ฒ€์ถœ๋œ ์—ด์ฐจ์ ‘๊ทผ์€ RGB ์ด๋ฏธ์ง€ ์•„๋ž˜์— ํ‘œ์‹œ๋˜๋ฉฐ, ์ ์ƒ‰ ์›์œผ๋กœ ํ‘œ์‹œ๋œ๋‹ค. ํ‘์ƒ‰ ์ƒ์ž๋Š” region of interest์ด๋ฉฐ, ์ „์ฒด ์ด๋ฏธ์ง€ ์ค‘ ํ•ด๋‹นํ•˜๋Š” ๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ๋Š” ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ž‘๋™ํ•œ๋‹ค. KTX, ํ™”๋ฌผ์—ด์ฐจ, ๋„์‹œ์ฒ ๋„์ฐจ๋Ÿ‰ ๋“ฑ ๋‹ค์–‘ํ•œ ์—ด์ฐจ ์œ ํ˜•์ด ๋ชจ๋‘ ๊ด‘ํ•™ ํ๋ฆ„๊ณผ ๋ฌผ์ฒด ๊ฒ€์ถœ์„ ํ†ตํ•ด ์ ‘๊ทผ์ด ๊ฒ€์ถœ๋˜์—ˆ๊ณ , ๋ ˆ์ด๋”์˜ ๊ฒฝ์šฐ ๊ทผ์ ‘ํ•  ์‹œ ์ž‘๋™ํ•ด ๋ง์› ๋ Œ์ฆˆ๊ฐ€ ๋ ˆ์ด๋” ์ž‘๋™ ๋ฒ”์œ„๋ณด๋‹ค ๋จผ ๊ณณ์— ์žˆ๋Š” ์—ด์ฐจ๋ฅผ ์ž˜ ์ดฌ์˜ํ•˜๋„๋ก ๋™์ž‘ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 19๋Š” ์•ผ๊ฐ„์— ์ง„ํ–‰ํ•œ ํ˜„์žฅ ์‹œํ—˜ ๊ฒฐ๊ณผ ์ผ๋ถ€์ด๋ฉฐ, ์ฃผ๊ฐ„ ์˜์ƒ๊ณผ ๋™์ผํ•˜๊ฒŒ ํ‘œํ˜„๋˜์–ด ์žˆ๋‹ค. ์•ผ๊ฐ„์˜ ๊ฒฝ์šฐ ์กฐ๋„ ๋ถ€์กฑ์œผ๋กœ ์—ด์ฐจ ํŠน์ง• ์ถ”์ถœ์ด ์–ด๋ ค์šด ์ธก๋ฉด์ด ์žˆ์—ˆ์œผ๋ฉฐ, ์–ด๋–ค ๊ฒฝ์šฐ์—๋Š” ์ „์กฐ๋“ฑ์ด ์žˆ๋Š” ์‹ ํ˜ธ๋“ฑ์ด ๋นˆ๋ฒˆํžˆ ๊ฒ€์ถœ๋˜์—ˆ๋‹ค. ์ฃผ๊ฐ„, ์•ผ๊ฐ„ ๋น„๊ต ์‹œ ์•ผ๊ฐ„์ด ์—ด์ฐจ์— ๋Œ€ํ•œ ๋ฌผ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ์€ ํ•˜๋ฝํ•œ๋‹ค. ๋ฌผ์ฒด ๊ฒ€์ถœ ์„ฑ๋Šฅ์€ ๊ฐ์†Œํ–ˆ์œผ๋‚˜ ๊ด‘ํ•™ ํ๋ฆ„ ์ถ”์ •์ด ์ด๋ฅผ ๋ณด์™„ํ•ด ์—ด์ฐจ์ ‘๊ทผ์„ ๊ฒ€์ถœํ•˜๊ณ  ์ฃผ๊ฐ„์— ๋น„ํ•ด ๋…ธ์ด์ฆˆ๊ฐ€ ์กฐ๊ธˆ ๋” ๋ฐœ์ƒํ•˜๋‚˜ ์ „์กฐ๋“ฑ์˜ ์›€์ง์ž„์„ ํ†ตํ•ด ์—ด์ฐจ์ ‘๊ทผ์„ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๊ทธ๋ฆผ 18. ํ˜„์žฅ ์‹œํ—˜ ๊ฒฐ๊ณผ- ์ฃผ๊ฐ„

Fig. 18. Field Test Results โ€“ Daytime

../../Resources/kiee/KIEE.2024.73.10.1794/fig18.png

๊ทธ๋ฆผ 19. ํ˜„์žฅ ์‹œํ—˜ ๊ฒฐ๊ณผ- ์•ผ๊ฐ„

Fig. 19. Field Test Results โ€“ Nighttime

../../Resources/kiee/KIEE.2024.73.10.1794/fig19.png

4. ๊ฒฐ ๋ก 

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฒ ๋„ ์ข…์‚ฌ์ž ์‚ฌ์ƒ์‚ฌ๊ณ  ํŠนํžˆ ์„ ๋กœ๋ณ€ ์ž‘์—…์ž ์น˜์ž„์‚ฌ๊ณ  ์ ˆ๊ฐ์„ ์œ„ํ•ด AI ์˜์ƒ๋ถ„์„ ๊ธฐ๋ฐ˜ ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ์„ ํ†ตํ•œ ์ž‘์—…์ž ์•ˆ์ „์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๊ธฐ์ˆ ๊ฐœ๋ฐœ ๊ณผ์ •์„ ํ†ตํ•ด ๋„์ถœ๋œ ๊ด‘ํ•™ํ๋ฆ„ ์ถ”์ •์„ ํ™œ์šฉํ•œ AI ์˜์ƒ๋ถ„์„ ๊ธฐ๋ฐ˜ ์—ด์ฐจ ์ ‘๊ทผ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ ์ธก๋ฉด ์šฐ์ˆ˜์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์‹œํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ๋Š” ์‹œ๊ฐ„ ์ฐจ๊ฐ€ ์žˆ๋Š” ๊ณผ๊ฑฐ์™€ ํ˜„์žฌ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•œ ํ›„ ๋ฌผ์ฒด ๊ฒ€์ถœ ์ธ๊ณต์ง€๋Šฅ์œผ๋กœ ํ˜„์žฌ ์ด๋ฏธ์ง€์—์„œ ์—ด์ฐจ ๊ฒ€์ถœ ๋ ˆ์ด๋”๋ฅผ ํ™œ์šฉํ•ด ์›€์ง์ด๋Š” ๋ฌผ์ฒด ์ •๋ณด ์ทจ๋“ ํ›„ ํ•ด๋‹น ์ •๋ณด๋“ค์„ ์กฐํ•ฉํ•ด ์—ด์ฐจ์ ‘๊ทผ์„ ํŒ๋‹จํ•˜์˜€๋‹ค. ์ด๋ฏธ์ง€ ๊ฐ„ ๊ด‘ํ•™ ํ๋ฆ„์ด ์ผ์ •ํ•˜๋‹ค๋Š” ๊ฐ€์ •ํ•˜์— ๋™์ผํ•œ ํŠน์ง•์„ ์ง์ง€์–ด ์œ„์น˜ ์ฐจ๋ฅผ ํ™œ์šฉํ•ด ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•˜์˜€๋‹ค. ๊ฒ€์ฆ ๊ณผ์ •์—์„œ ์—ฌ๋Ÿฌ FlowNet์„ ์กฐํ•ฉ ํ›„ ํ•˜๋‚˜๋กœ ์žฌ๊ตฌ์„ฑํ•ด ์—ฐ์‚ฐ์†๋„๊ฐ€ 8๋ฐฐ ์ฆ๊ฐ€ํ•˜๋ฉฐ FlowNet2.0์ด FlowNet๋ณด๋‹ค ๋” ๋†’์€ ํ’ˆ์งˆ์„ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, FastFlowNet์„ ํ™œ์šฉํ•ด ๊ด‘ํ•™ ํ๋ฆ„์„ ์ถ”์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ ์ถ”์ถœ์„ ์œ„ํ•ด HEPP, CDDC, SBD๋ฅผ ์ ์šฉํ•ด ์ •ํ™•๋„ ์œ ์ง€ ๋ฐ ๋น ๋ฅธ ์ถ”๋ก  ์†๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋ฌผ์ฒด ๊ฒ€์ถœ AI ๋ชจ๋ธ์€ YOLOv7 ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ด‘ํ•™ ํ๋ฆ„์—์„œ ๊ฒ€์ถœ๋œ ์›€์ง์ž„์ด ์—ด์ฐจ์— ์˜ํ•œ ๊ฒƒ์ธ์ง€ ํŒ๋‹จํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ •ํ™•์„ฑ ๋ฐ ์‹ ๋ขฐ์„ฑ ๊ฒ€์ฆ์„ ์œ„ํ•ด ์‹คํ—˜์‹ค ๊ฒ€์ฆ๊ณผ ํ˜„์žฅ ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๋‘ ๊ฒฝ์šฐ ๋ชจ๋‘ ์ฃผ๊ฐ„ ๋ฐ ์•ผ๊ฐ„ ์˜์ƒ ๊ฒ€์ถœ์œจ 100%๋ฅผ ๋‹ฌ์„ฑํ–ˆ์œผ๋ฉฐ ํ˜„์žฅ ๊ฒ€์ฆ์˜ ๊ฒฝ์šฐ ์šฐ์ฒœ, ์šฐ๋ฐ• ๋“ฑ ์•…์ฒœํ›„ ์ƒํ™ฉ์—์„œ๋„ ๊ฒ€์ถœ์œจ 100%๋ฅผ ๋‹ฌ์„ฑํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ ์ •์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

AI ์˜์ƒ๋ถ„์„ ๊ธฐ๋ฐ˜ ์—ด์ฐจ์ ‘๊ทผ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•œ ์—ด์ฐจ์ ‘๊ทผ ์žฅ์น˜๋Š” ํœด๋Œ€์„ฑ, ์‚ฌ์šฉํŽธ์˜์„ฑ ๋“ฑ ํ˜„์žฅํ™œ์šฉ์„ฑ์„ ํ™•๋ณดํ•˜์—ฌ ์„ ๋กœ๋ณ€ ์ž‘์—… ์•ˆ์ „์„ฑ ์ฆ๋Œ€๊ณผ ์ฒ ๋„ ์œ ์ง€๋ณด์ˆ˜ ํšจ์œจํ™”์—๋„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ํ–ฅํ›„ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ์ž‘์—…์ž ์•ˆ์ „์‹œ์Šคํ…œ ๊ธฐ์ˆ ์€ ๊ตญ๊ฐ€์—ฐ๊ตฌ๊ฐœ๋ฐœ์‚ฌ์—…์œผ๋กœ ๊ฐœ๋ฐœ๋œ ์‹ค์‹œ๊ฐ„ ์ฒ ๋„ ์•ˆ์ „ ๊ด€์ œ ์‹œ์Šคํ…œ๊ณผ ์—ฐ๊ณ„ํ•˜์—ฌ ์ฒ ๋„์•ˆ์ „ ํ†ตํ•ฉ ๊ฐ์‹œ์ œ์–ด ๊ธฐ์ˆ ์˜ ํ™œ์šฉ์„ฑ ์ฆ๋Œ€์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์ฒ ๋„๊ธฐ์ˆ ์—ฐ๊ตฌ์› ์ฃผ์š”์‚ฌ์—…(์ฒ ๋„์‚ฌ๊ณ  ์œ„ํ—˜ยทํ”ผํ•ด ์˜ํ–ฅ ํ‰๊ฐ€ ๋””์ง€ํ„ธ ์ „ํ™˜ ํ•ต์‹ฌ๊ธฐ์ˆ  ๊ฐœ๋ฐœ, PK2402A1)๊ณผ ๊ตญํ† ๊ตํ†ต๋ถ€ ์†Œ๊ด€ ๊ตญ๊ฐ€์—ฐ๊ตฌ๊ฐœ๋ฐœ์‚ฌ์—…(์ฒ ๋„ ์ข…์‚ฌ์ž์˜ ์ธ์ ์˜ค๋ฅ˜ ๋ถ„์„ยทํ‰๊ฐ€ยท์˜ˆ๋ฐฉ ๊ธฐ์ˆ ๊ฐœ๋ฐœ, RS-0023-00239464)์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

The research was supported by the R&D project of Korea Railroad Research Institute funded by National Research Council of Science and Technology (PK2402A1) and the National R&D Project funded by Ministry of Land, Infrastructure, and Transport (RS-0023-00239464).

References

1 
D. H. Lee, H. S. Yeo, S. H. Kim, S. A. Kim, โ€œA Study on the Framework for Real-time Railway Safety Integrated Monitoring and Control System,โ€ Journal of the Korea Society for Urban Railway, vol. 3, no. 2, pp. 367~374, 2015.URL
2 
Yunjung Park, Sangahm Kim, โ€œResearch on Development and Verification of Data Transmission Standard for Real-time Integrated Railway Safety Monitoring and Control System,โ€ Journal of the Korean Society for Railway, vol. 20, no. 6, pp. 749~763, 2017.DOI:10.7782/jksr.2017.20.6.749URL
3 
Yunjung Park, Damsub Lim, Dugki Min, Sang Ahm Kim, โ€œResearch on Design of DDS-based Conventional Railway Signal Data Specification for Real-time Railway Safety Monitoring and Control,โ€ Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 4, pp. 739~746, 2016.DOI:10.6109/jkiice.2016.20.4.739DOI
4 
Sang Log Kwak, โ€œRisk Estimation Study on Railway Track Worker Hit by Train,โ€ Journal of the Korean Society of Safety, vol. 35, no. 3, pp. 72~78, 2020.DOI:10.14346/JKOSOS.2020.35.3.72DOI
5 
Dong-myung Kim, โ€œA Study on the Construction and Application ofthe Protection System for the Workers adjacentto Train Operation Line,โ€ Master's thesis, Korea National University of Transportation, 2022.URL
6 
Tsung-Yi Lin, et al., โ€œMicrosoft coco: Common Objects in Context,โ€ Computer Vision-ECCV2014 Conference paper, vol. 8693, pp. 749~755, 2014.DOI:10.1007/978-3-319-10602-1_48URL
7 
Alexey Dosovitskiy, et al., โ€œFlownet: Learning Optical Flow with Convolutional Networks,โ€ 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2758~2766, 2015.DOI:10.1109/iccv.2015.316URL
8 
Eddy Ilg, et al., โ€œFlownet 2.0: Evolution of Optical Flow Estimation with Deep Networks,โ€ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2462~2470, 2017.DOI:10.1109/cvpr.2017.179URL
9 
Deqing Sun, et al., โ€œPWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume,โ€ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8934~8943, 2018.DOI:10.1109/cvpr.2018.00931URL
10 
Tak-Wai Hui , Xiaoou Tang, Chen Change Loy, โ€œLiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation,โ€ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8981~8989, 2018.DOI:10.1109/cvpr.2018.00936URL
11 
Lingtong Kong, Chunhua Shen, Jie Yang, โ€œFastFlowNet: A LightweightNetwork for Fast Optical Flow Estimation,โ€ 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021.DOI:10.1109/icra48506.2021.9560800DOI
12 
Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao, โ€œYOLOv7: Trainable bag-of-freebies Sets New state-of-the-art for Real-time Object Detectors,โ€ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464~7475, 2023.DOI:10.1109/cvpr52729.202300721URL

์ €์ž์†Œ๊ฐœ

๊น€์ƒ์•”(Sang-Ahm Kim)
../../Resources/kiee/KIEE.2024.73.10.1794/au1.png

He Received his B.S., M.S. and Ph.D degree in Dept. of Electrical Engineering from Korea Univ. Korea. He is currently principal researcher in Dept. of railway system safety research. His research interests are real-time railway safety monitoring and control technologies and related AI applicaiotns.

E-mail : sangahm@krri.re.kr

์†ก์€์ฃผ(Eun-Ju Song)
../../Resources/kiee/KIEE.2024.73.10.1794/au2.png

She received her bachelor's degree from Korea National University of Transportation in 2023. She is currently pursuing a master's degree at Seoul National University of Science and Technology and works as a researcher in the Railway System Safety Research Department.Her research interests lie in the development of safety technologies for railway workers.

E-mail : sej22@krri.re.kr