• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical and Computer Engineering, University of Seoul, Republic of Korea.)



Distribution system, Reverse power flow, Step voltage regulator, Machine learning

1. ์„œ ๋ก 

ํƒ„์†Œ์ค‘๋ฆฝ ์ •์ฑ…์— ๋”ฐ๋ผ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์žฌ์ƒ์—๋„ˆ์ง€ ๊ธฐ๋ฐ˜์˜ ์„ค๋น„ ๋ณด๊ธ‰๋ฅ ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ํ™”์„์—ฐ๋ฃŒ์— ๋Œ€ํ•œ ๊ฐ์ถ•์ด ์ „๋ง๋˜๊ณ , ๋‹จ์ผํ™”๋œ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ ๋ฐœ์ „์„ค๋น„๋ฅผ ํ™œ์šฉํ•˜๊ธฐ๋ณด๋‹ค ๋ฌดํƒ„์†Œ ์ „์›์ธ ์›์ „๊ณผ ์žฌ์ƒ์—๋„ˆ์ง€์˜ ๋ณตํ•ฉ์ ์ธ ๊ตฌ์„ฑ์„ ํ†ตํ•ด ํ™˜๊ฒฝ์— ์˜ํ•œ ๊ณ„ํ†ต ์˜ํ–ฅ์„ ์ค„์ž„์œผ๋กœ์จ ์•ˆ์ •์ ์ธ ๊ณ„ํ†ต ์šด์˜์„ ์œ„ํ•œ ๋ฐฉ์•ˆ์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ตญ๋‚ด์—์„œ๋„ ์žฌ์ƒ์—๋„ˆ์ง€ ๊ณต๊ธ‰ ๊ฐ€์†ํ™”๋ฅผ ์ด๋ฃจ๊ณ ์ž ์žฌ์ƒ์—๋„ˆ์ง€ 3020๊ณผ ๊ฐ™์€ ์ •์ฑ…์„ ๊ณตํ‘œํ•˜๊ณ  ์žˆ๋‹ค[1]. ์ œ 11์ฐจ ์ „๋ ฅ์ˆ˜๊ธ‰๊ธฐ๋ณธ๊ณ„ํš(์‹ค๋ฌด์•ˆ)์— ๋”ฐ๋ฅด๋ฉด, ์ „๋ ฅ์ˆ˜์š”์˜ ์ฆ๊ฐ€๋กœ ์ธํ•ด 2038๋…„ ์ตœ๋Œ€ ์ „๋ ฅ์ˆ˜์š”๋Š” 128.9 GW๋กœ ์ „๋ง๋˜์–ด 2023๋…„ ์ตœ๋Œ€์ˆ˜์š” ๋Œ€๋น„ 30.6 GW๊ฐ€ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ ์ •์˜ˆ๋น„์œจ 22%๋ฅผ ๊ฐ์•ˆํ•  ๋•Œ 2038๋…„๊นŒ์ง€ ํ•„์š”ํ•œ ๋ฐœ์ „์„ค๋น„ ์šฉ๋Ÿ‰์€ 157.8 GW์ด๋ฉฐ, ์ด์— ๋”ฐ๋ผ ์žฌ์ƒ์—๋„ˆ์ง€๋Š” 120 GW๊ฐ€ ๋ณด๊ธ‰๋  ์ „๋ง์ด๋‹ค. ํŠนํžˆ, ๋ฌดํƒ„์†Œ์—๋„ˆ์ง€ ๋ฐœ์ „ ๋น„์ค‘์ด 70%์— ๋„๋‹ฌํ•˜์—ฌ, ์ „์ฒด ๋น„์ค‘ ์ธก๋ฉด์—์„œ ํƒœ์–‘๊ด‘ ๋ฐ ํ’๋ ฅ๋ฐœ์ „์˜ ํ™œ์šฉ ๋น„์ค‘์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค[2]. ์ด๋Ÿฌํ•œ ๋ฐœ์ „์› ๋น„์œจ์˜ ๋ณ€ํ™”์™€ ์žฌ์ƒ์—๋„ˆ์ง€ ๋น„์œจ์˜ ์ฆ๊ฐ€๋Š” ์ „๋ ฅ๊ณ„ํ†ต ๊ด€๋ฆฌ ๋ฐ ์šด์˜ ๋ฌธ์ œ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ์–ด, ๋ณ€ํ™”๋œ ์ „๋ ฅ๊ณ„ํ†ต ์šด์˜๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์™€ ์‹ ์žฌ์ƒ๋ฐœ์ „์› ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

ํ•œํŽธ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์€ ๋‚ ์”จ ๋ฐ ๊ธฐํ›„ ๋“ฑ ์™ธ๋ถ€์š”์ธ์˜ ์˜ํ–ฅ์„ ๋ฐ›์•„ ์ถœ๋ ฅ ๋ณ€๋™์„ฑ์ด ํฐ ๋ฐœ์ „์›์ด๋‹ค. ์ผ๋ถ€ ๋ฐฐ์ „๊ณ„ํ†ต์— ์œ„์น˜ํ•œ ๋ถ„์‚ฐํ˜• ์ „์›์—์„œ ์ด๋Ÿฌํ•œ ํŠน์„ฑ์ด ์‹ฌํ™”์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๊ณ , ๋ถ„์‚ฐํ˜• ์ „์›์˜ ์šฉ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๋ฉด์„œ, ์ €์•• ๋ฐฐ์ „๊ณ„ํ†ต์—์„œ ํ—ˆ์šฉ ์ „์›์˜ ๊ณ ๋ฐ€๋„๋กœ ์ธํ•œ ์ „์•• ์ƒ์Šน ๋ฌธ์ œ๋กœ ์ธํ•ด ๋ถ„์‚ฐํ˜• ์ „์›์˜ ์„ค์น˜ ์šฉ๋Ÿ‰์ด ์ œํ•œ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฐฐ์ „๊ณ„ํ†ต์€ ์†Œ๊ทœ๋ชจ์˜ ๋ถ„์‚ฐํ˜• ์ „์›๊ณผ ๋ถ€ํ•˜๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์—ˆ๊ณ , ์ „์••๊ฐ•ํ•˜์˜ ๊ฒฝ์šฐ, ๋ฐฐ์ „์šฉ ๋ณ€์ „์†Œ๋กœ๋ถ€ํ„ฐ ์ˆ˜์šฉ๊ฐ€๋กœ ํ๋ฅด๋Š” ๋‹จ๋ฐฉํ–ฅ ์กฐ๋ฅ˜์— ์˜ํ•ด ๋ฐœ์ƒํ•˜์˜€์œผ๋‚˜, ๋Œ€์šฉ๋Ÿ‰ ๋ถ„์‚ฐํ˜• ์ „์›์ด ๋ฐฐ์ „์„ ๋กœ์— ์—ฐ๊ณ„๋˜๋ฉด์„œ ์–‘๋ฐฉํ–ฅ ์กฐ๋ฅ˜์˜ ์˜ํ–ฅ์„ ๋ฐ›๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋ฐฐ์ „๊ณ„ํ†ต ๋ง๋‹จ ์ง€์ ์—์„œ์˜ ์ „์•• ์ƒ์Šน, ์ „๋ ฅํ’ˆ์งˆ ์ €ํ•˜ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ์ด ์กด์žฌํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ํ•œ๊ตญ์ „๋ ฅ๊ณต์‚ฌ๋Š” ์žฌ์ƒ์—๋„ˆ์ง€ ๊ณต๊ธ‰ ๊ฐ€์†ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๋Š” ์ง€์—ญ์—์„œ ๋ฐฐ์ „๊ณ„ํ†ต ์ ‘์† ๋Œ€๊ธฐ๊ฐ€ ์žฅ๊ธฐ๊ฐ„ ๋ฐœ์ƒํ•จ์„ ์ธ์‹ํ•˜๊ณ , ์‹ ๊ทœ ๋ณ€์ „์†Œ ๋ฐ ๋ฐฐ์ „์„ ๋กœ ๊ฑด์„ค์„ ์œ„ํ•œ ๋ณด๊ฐ•์„ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค.

ํ˜„์žฌ ๋ฐฐ์ „๊ณ„ํ†ต์—์„œ ์ „์••์„ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ, ๋ฐฐ์ „์šฉ ๋ณ€์ „์†Œ์˜ OLTC(On Load Tap Changer)๋ฅผ ํ™œ์šฉํ•˜์—ฌ LDC(Line Drop Compensator) ์šด์ „์„ ํ†ตํ•ด ์†ก์ถœ ์ „์••์„ ์ œ์–ดํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณ ์•• ๋ฐฐ์ „์„ ๋กœ์— ์œ„์น˜ํ•œ ์ฃผ์ƒ๋ณ€์••๊ธฐ์˜ ํƒญ ์กฐ์ •์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค[3]. ํ•˜์ง€๋งŒ ๋Œ€๊ทœ๋ชจ์˜ ๋ถ„์‚ฐ ์ „์›์ด ์—ฐ๊ณ„๋œ ๋ฐฐ์ „์„ ๋กœ์—์„œ๋Š” ๋ถ€ํ•˜์ „๋ฅ˜์˜ ํฌ๊ธฐ๊ฐ€ ์ง€์†์ ์œผ๋กœ ๋ณ€๋™๋จ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ์ œ์–ด ๋ฐฉ์‹์— ๋Œ€ํ•œ ์–ด๋ ค์›€์ด ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค.

ํ•œํŽธ, ์žฅ๊ฑฐ๋ฆฌ์˜ ๊ณ ์•• ๋ฐฐ์ „ ์„ ๋กœ๋‚˜ 10% ์ด์ƒ์˜ ์ „์••๊ฐ•ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ๊ฐ„์—์„œ๋Š” ์ „์••์กฐ์ •์žฅ์น˜์ธ SVR(Step Voltage Regulator)์„ ์„ค์น˜ํ•˜์—ฌ ๊ทœ์ • ์ „์••์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค[4]. ์ผ๋ฐ˜์ ์œผ๋กœ SVR์€ ๋ฐฐ์ „์„ ๋กœ์— ์˜ํ•œ ์ „์••๊ฐ•ํ•˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ™œ์šฉ๋˜์—ˆ์ง€๋งŒ, ์ผ๋ถ€ ๋ฐฐ์ „์šฉ ๋ณ€์ „์†Œ์— ์œ„์น˜ํ•œ OLTC์™€ ์ƒํ˜ธ ์ข…์†์ ์œผ๋กœ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ์ ์—์„œ ํšจ์œจ์„ฑ์ด ์ €ํ•˜๋˜๋Š” ํ˜„์ƒ์ด ์žˆ์—ˆ๋‹ค. ํŠนํžˆ, ์žฌ์ƒ์—๋„ˆ์ง€ ๊ธฐ๋ฐ˜์˜ ๋ถ„์‚ฐํ˜• ์ „์›์˜ ๊ฐ„ํ—์ ์ธ ์ถœ๋ ฅํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๋ถ€ํ•˜์ „๋ฅ˜์˜ ๋ณ€๋™์ด ์œ ๋ฐœ๋˜์–ด SVR์˜ ๊ณผ๋„ํ•œ ํƒญ ์กฐ์ •์ด ๋ฐœ์ƒํ•œ๋‹ค. SVR์˜ ๊ธฐ๊ณ„์  ์ธก๋ฉด์—์„œ ๋ณผ ๋•Œ, ์ด๋Š” ์ˆ˜๋ช… ๋‹จ์ถ•์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ์ˆ˜์šฉ๊ฐ€ ์ธก ์ „์•• ํ’ˆ์งˆ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น  ์šฐ๋ ค๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ถ„์‚ฐํ˜• ์ „์›์˜ ๋ฐœ์ „ ํŠน์„ฑ๊ณผ ๋ถ€ํ•˜๋Ÿ‰์„ ๊ณ ๋ คํ•˜์—ฌ ์ •๋ฐ€ํ•œ ์ „์••์ œ์–ด๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•œ ๋‹ค์–‘ํ•œ ์˜ˆ์ธก ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค[5]. ์ „์••์กฐ์ •์žฅ์น˜์˜ ๊ฒฝ์šฐ, ๋ณ€์••๊ธฐ ํƒญ ๋™์ž‘ ํšŸ์ˆ˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์ „์— ์ „์••๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๊ณ„ํš ์ˆ˜๋ฆฝ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ANN(Artificial Neural Network), RNN(Recurrent Neural Network) ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์˜ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ „์••์กฐ์ •์žฅ์น˜์˜ ์˜ˆ์ธก์—์„œ LSTM(Long Short-Term Memory)์€ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉ๋œ๋‹ค[6-8]. ๋”ฐ๋ผ์„œ SVR ๋™์ž‘ ์˜ˆ์ธก์€ ๋‹จ๊ธฐ๊ฐ„ ๋‚ด์— ์ฆ๊ฐ€ํ–ˆ๋‹ค ๊ฐ์†Œํ•˜๋Š” ๋ถˆํ•„์š”ํ•œ ๋™์ž‘์ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์„ ์‚ฌ์ „์— ํ‰๊ฐ€๊ฐ€ ๊ฐ€๋Šฅํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ OLTC์™€ SVR ๊ฐ„์˜ ํ˜‘์กฐ์ œ์–ด๋ฅผ ํ†ตํ•ด ๋™์ž‘ ํšŸ์ˆ˜ ์ €๊ฐ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค[9-10].

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์ด ํฌํ•จ๋œ ๋ฐฐ์ „๊ณ„ํ†ต์—์„œ ๊ณผ๋„ํ•œ ์ถœ๋ ฅ๋ณ€๋™์œผ๋กœ ์ธํ•ด ๋ฐฐ์ „์„ ๋กœ์˜ ์ „์••์ด ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฝ์šฐ, ๋ณ€์ „์†Œ OLTC์™€์˜ ํ•ฉ๋ฆฌ์ ์ธ ์ „์••์ œ์–ด๋ฅผ ์œ„ํ•ด ์‚ฌ์ „ ์˜ํ–ฅ ํ‰๊ฐ€๊ฐ€ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๋„๋ก, ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ SVR ํƒญ ๋™์ž‘์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ถˆํ™•์‹คํ•œ ํŠน์„ฑ์„ ์ง€๋‹Œ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๋ถ€ํ•˜ ๋ฐ ๋ฐœ์ „๋Ÿ‰ ๋ณ€ํ™”๋ฅผ ์ ์šฉํ•œ ์˜ˆ์ธก๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ, SVR์˜ ์šด์ „ ์ง€์ ์„ ๋ณ€๊ฒฝํ•˜์—ฌ ์—ฌ๋Ÿฌ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ทจ๋“ํ•˜๊ณ , ์ถ”๊ฐ€ ํ•™์Šต์„ ํ†ตํ•ด ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ณ ์ž ํ•œ๋‹ค.

2. SVR์˜ ์šด์˜ ๊ตฌ์กฐ

2.1 ๋ฐฐ์ „๊ณ„ํ†ต์—์„œ ์ „์••์กฐ์ •์žฅ์น˜ ์šด์˜

์‹ ์žฌ์ƒ์—๋„ˆ์ง€์›๊ณผ ๊ฐ™์€ ๋ถ„์‚ฐํ˜• ์ „์›์ด ๋ฐฐ์ „๊ณ„ํ†ต์— ์—ฐ๊ณ„๋˜๋Š” ๊ฒฝ์šฐ, ์ผ์ผ ๋ถ€ํ•˜๋ณ€๋™์ด ํฐ ์„ ๋กœ๋ง๋‹จ ๋˜๋Š” ์žฅ๊ฑฐ๋ฆฌ ๋ฐฐ์ „์„ ๋กœ์—์„œ์˜ ์ „์••์ด ์•ˆ์ •๋ฒ”์œ„๋ฅผ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜๋Š” ํ˜„์ƒ์ด ๋‹ค์ˆ˜ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ˆ˜์šฉ๊ฐ€์ธก์— ์ „๋ ฅ์„ ์•ˆ์ •์ ์œผ๋กœ ๊ณต๊ธ‰ํ•˜๊ธฐ ์œ„ํ•ด, ํ˜„์žฌ ๋ฐฐ์ „๊ณ„ํ†ต์—์„œ๋Š” ๋ถ€ํ•˜๋‹จ์œผ๋กœ ํ–ฅํ•˜๋Š” ์„ ๋กœ ์ƒ์— SVR๊ณผ ๊ฐ™์€ ์ „์••์กฐ์ •์žฅ์น˜๋ฅผ ์„ค์น˜ํ•˜์—ฌ ์šด์˜ ์ค‘์— ์žˆ๋‹ค. SVR์˜ ๊ตฌ์กฐ๋Š” ๋‹จ๊ถŒ ๋ณ€์••๊ธฐ์™€ ํƒญ ์ ˆํ™˜ ์žฅ์น˜๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ „์••์ œ์–ด์˜ ๊ฒฝ์šฐ ํƒญ ๋ณ€ํ™˜ ์ž‘๋™์œผ๋กœ ์ธํ•ด ์กฐ์ •๋œ๋‹ค. ์ผ๋ฐ˜์ ์ธ SVR์˜ ๊ฒฝ์šฐ ์ด 32๊ฐœ์˜ ํƒญ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ํƒญ ๊ฐ„๊ฒฉ์€ ์•ฝ 0.625%๋กœ ์ด๋Š” ๊ธฐ์ค€์ „์••์˜ ยฑ10%์— ํ•ด๋‹นํ•œ๋‹ค.

SVR์ด ์„ ๋กœ ์ƒ ์ „์••์„ ์กฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ํƒญ ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณ€์••๊ธฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํƒญ์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์น˜๊ฒŒ ๋˜๋ฉฐ, ์„ค์น˜ ์ง€์ ์˜ 2์ฐจ ์ธก ์†ก์ถœ์ „์••์„ ์กฐ์ •ํ•˜์—ฌ ์ดํ›„ ๋ถ€ํ•˜๋‹จ์˜ ์ „์••์„ ์กฐ์ •ํ•œ๋‹ค[11]. ์ผ๋ฐ˜์ ์ธ ํƒญ ์ „ํ™˜ ์žฅ์น˜์˜ ๊ตฌ์กฐ๋ฅผ ํฌํ•จํ•˜์—ฌ ์ ์ ˆํ•œ ํƒญ ์œ„์น˜๋ฅผ ์„ ์ •ํ•˜๊ธฐ ์œ„ํ•œ SVR ๋‚ด๋ถ€ ์ž‘๋™ ๋‹ค์ด์–ด๊ทธ๋žจ์„ ๋‚˜ํƒ€๋‚ด๋ฉด ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™๋‹ค.

SVR์˜ ์ฃผ์š” ์šด์šฉ ๋ฐฉ์‹์œผ๋กœ๋Š” ๋ฐฐ์ „์„ ๋กœ์— ์—ฐ๊ณ„๋œ ๋ถ€ํ•˜ ๋ณ€๋™๋Ÿ‰์— ์ƒ์‘ํ•˜์—ฌ ๋ถ€ํ•˜์ „๋ฅ˜๋กœ๋ถ€ํ„ฐ ์„ ๋กœ๋‹จ์˜ ์ตœ์ ์†ก์ถœ์ „์••์„ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ํƒญ ์กฐ์ •์ƒํƒœ๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” LDC ๋ฐฉ์‹, ๋ถ€ํ•˜ ๋ณ€๋™๋Ÿ‰๊ณผ ์ƒ๊ด€์—†์ด ์ตœ์ ์†ก์ถœ์ „์••์„ ๊ณ ์ •ํ•จ์œผ๋กœ์จ ํƒญ์„ ์กฐ์ •ํ•˜๋Š” ์ผ์ •์†ก์ถœ๋ฐฉ์‹, ์ด์™ธ์—๋„ ๊ณ„ํ†ต์— ์—ฐ๊ณ„๋œ ๋ถ„์‚ฐ์ „์›์˜ ์ถœ๋ ฅ์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜๋Š” ์‹œ๊ฐ„๋Œ€์— ์‚ฌ์ „์— ๊ณ ์ •๋œ ์†ก์ถœ์ „์••์— ๋”ฐ๋ผ ํƒญ์„ ์กฐ์ •ํ•˜๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ฐฉ์‹์ด ์žˆ๋‹ค.

๊ทธ๋ฆผ 1. ๋ฐฐ์ „๊ณ„ํ†ต์—์„œ SVR ๊ตฌ์กฐ ๋ฐ ์ž‘๋™ ๋‹ค์ด์–ด๊ทธ๋žจ

Fig. 1. SVR structure and operation diagram in the distribution system

../../Resources/kiee/KIEE.2025.74.1.7/fig1.png

LDC ๋ฐฉ์‹์˜ ๊ฒฝ์šฐ ๋ถ„์‚ฐ์ „์›์ด ์—ฐ๊ณ„์— ๋”ฐ๋ฅธ ๋ฐฐ์ „์„ ๋กœ ๋‚ด ์ถœ๋ ฅ๋ณ€๋™ ๋ฐ ๋ถ€ํ•˜์ „๋ฅ˜ ๋ณ€๋™์ด ์‹ฌํ™”๋  ๋•Œ, SVR๋กœ๋ถ€ํ„ฐ์˜ ์ตœ์ ์†ก์ถœ์ „์••์ด ์—ฐ์†์ ์œผ๋กœ ์ „ํ™˜๋œ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Š” ๊ณ„ํ†ต ๋‚ด ์กฐ๋ฅ˜๊ฐ€ ๋ฐฐ์ „ ๋ณ€์ „์†Œ์—์„œ ๋ถ€ํ•˜๋‹จ ๋ฐฉํ–ฅ์˜ ์ˆœ๋ฐฉํ–ฅ์ผ ๊ฒฝ์šฐ์— ํ•ด๋‹นํ•˜๋ฉฐ, ๋ถ„์‚ฐํ˜• ์ „์›์— ์˜ํ•œ ์—ญ์กฐ๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ, SVR ์ „์••์ œ์–ด ๋ฐฉ์‹์— ๋”ฐ๋ผ ์ •์ƒ์ ์ธ ํƒญ ์ž‘๋™ ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€ํ•œ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์–ด, ์„ ๋กœ ์ „์••์ด ์ „์•• ์•ˆ์ • ๋ฒ”์œ„๋ฅผ ์œ„๋ฐ˜ํ•˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค.

SVR์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐฐ์ „ ๋ณ€์ „์†Œ ํ›„๋‹จ์— ์„ค์น˜๋˜๋ฉฐ, ์ด๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ SVR์˜ ์ „์•• ์กฐ์ • ์—ฌ๋ถ€ ๋ฐ ์กฐ์ •๋ฒ”์œ„์˜ ๊ธฐ์ค€์ด ๋˜๋Š” ๋‚ด๋ถ€ ์ œ์–ด๊ธฐ์ค€์ ์€ ๋ณ€์ „์†Œ์™€ ๋ฐ˜๋Œ€ ์ง€์ ์— ์œ„์น˜ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ฐฐ์ „๊ณ„ํ†ต ๋‚ด ๋ถ„์‚ฐํ˜• ์ „์› ๋„์ž…์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ฐฐ์ „์„ ๋กœ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ญ์กฐ๋ฅ˜ ํ˜„์ƒ์ด ์›์ธ์ธ ๊ฒฝ์šฐ, ๋ถ€ํ•˜์ „ํ™˜ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋Œ€๊ทœ๋ชจ ๋ถ„์‚ฐํ˜• ์ „์› ์—ฐ๊ณ„ ๋˜ํ•œ ํ•ด๋‹น๋˜๋ฉฐ, ๋”ฐ๋ผ์„œ SVR ์šด์šฉ ์‹œ ์„ ๋กœ ๋‚ด ์ ์ ˆํ•œ ์ „์••๊ด€๋ฆฌ๋ฅผ ์œ„ํ•ด์„œ๋Š” SVR์ด ์„ค์น˜๋œ ์„ ๋กœ์˜ ๋ถ„์‚ฐํ˜• ์ „์› ์—ฐ๊ณ„, ๋ถ€ํ•˜๋Ÿ‰๊ณผ ๊ฐ™์€ ํ˜„ํ™ฉ์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ์ œ์–ด๋ฐฉ๋ฒ•์„ ์„ ์ •ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ํ˜„์žฌ ๊ตญ๋‚ด์—์„œ SVR์— ์ ์šฉํ•˜๋Š” ์ „์••์ œ์–ด ๋ฐฉ์‹์œผ๋กœ๋Š” Forward, Reverse, Bi-directional ๋ฐ Co-generational ๋“ฑ์ด ์žˆ์œผ๋ฉฐ, ๊ฐ ์ œ์–ด๋ชจ๋“œ๋Š” SVR์˜ ์ˆœ๋ฐฉํ–ฅ ๋˜๋Š” ์—ญ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์ „์••์ œ์–ด ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ทธ๋ฆผ 2๋Š” ๊ฐ ์ „์••์ œ์–ด ๋ฐฉ์‹์„ ๋„์‹œํ•˜๊ณ  ์žˆ๋‹ค[12].

LOCKFWD(Locked Forward) ๋ฐฉ์‹ ๋ฐ LOCKREV(Locked Reverse) ๋ฐฉ์‹์€ ์„ ๋กœ ๋‚ด ์กฐ๋ฅ˜ ๋ฐฉํ–ฅ์ด ๊ณ ์ •๋˜์–ด ์žˆ์Œ์„ ๊ฐ€์ •ํ•˜๊ณ  ์šด์˜๋˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋ฐฐ์ „๊ณ„ํ†ต ์šด์˜ ์ค‘ ์„ ๋กœ ์ƒ์—์„œ ๋ถ€ํ•˜๋‹จ ์ธก์œผ๋กœ ํ–ฅํ•˜๋Š” ์ˆœ๋ฐฉํ–ฅ ์กฐ๋ฅ˜ ๋˜๋Š” ๋ฐฐ์ „ ๋ณ€์ „์†Œ ์ธก์œผ๋กœ ํ–ฅํ•˜๋Š” ์—ญ๋ฐฉํ–ฅ ์กฐ๋ฅ˜๊ฐ€ ํ๋ฅผ ๊ฒƒ์ž„์„ ์˜ˆ์ƒํ•˜๊ณ  ์ด์— ๋”ฐ๋ผ ์ „์••์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๊ฐ„๋‹จํ•˜๊ณ  ํšจ๊ณผ์ ์ธ ๋ฐฉ์‹์ด๋‚˜, ๋ถ€ํ•˜๋‹จ ์‚ฌ์šฉ์ „๋ ฅ ๋˜๋Š” ๋ถ„์‚ฐํ˜• ์ „์› ์ถœ๋ ฅ์ด ๊ธ‰์ฆํ•  ๊ฒฝ์šฐ, ์„ ๋กœ ์ƒ ์„ค์น˜๋œ SVR์—์„œ์˜ ์ฆ‰๊ฐ์ ์ธ ์ „์••์ œ์–ด๋ฅผ ์‹คํŒจํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. BIDIR(Bidirectional) ๋ฐฉ์‹์€ ์‚ฌ์ „์— ์ •ํ•ด์ง„ ์กฐ๋ฅ˜๋ฐฉํ–ฅ ์—†์ด ๋ฐฐ์ „๊ณ„ํ†ต์— ์—ฐ๊ณ„๋œ ๋‹ค์ˆ˜ ๊ธฐ๊ธฐ์— ์˜ํ•ด ์กฐ๋ฅ˜ ๋ฐฉํ–ฅ์ด ๋ณ€๋™๋˜๋Š” ๊ฒฝ์šฐ, ์ด์— ๋”ฐ๋ผ ์ „์••์ œ์–ด ๋ฐฉํ–ฅ์„ SVR์˜ 1์ฐจ ๋ฐ 2์ฐจ ์ธก ๋ฐฉํ–ฅ์œผ๋กœ ์ฆ‰๊ฐ ์ „ํ™˜ํ•ด๊ฐ€๋ฉด์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์ด๋ฅผ COGEN(Co-generation) ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•˜๋Š” ๊ฒฝ์šฐ, ๊ณ„ํ†ต ๋‚ด ๋ถ€ํ•˜์ธก์— ์—ฐ๊ณ„๋œ ๋ถ„์‚ฐ์ „์›์˜ ์ถœ๋ ฅ๋ณ€๋™์— ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋Œ€์‘ํ•œ๋‹ค๋Š” ์ ์—์„œ BIDIR ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•˜๋‚˜, COGEN ๋ฐฉ์‹์€ ์„ ๋กœ ๋‚ด ๋ฐฐ์ „ ๋ณ€์ „์†Œ ๋ฐฉํ–ฅ์œผ๋กœ ์—ญ์กฐ๋ฅ˜๊ฐ€ ํ๋ฅด๋Š” ์ƒํ™ฉ์—์„œ๋„, ๋ถ€ํ•˜ ์ธก์— ํ•ด๋‹นํ•˜๋Š” SVR์˜ 2์ฐจ ์ธก์—์„œ ์ „์••์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ์ด๋ฅผ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ, SVR ๋‚ด๋ถ€์—์„œ ์ตœ์ ์˜ ์†ก์ถœ ์ „์••์„ ์‚ฐ์ •ํ•จ์œผ๋กœ์จ ๋ฐฐ์ „๊ณ„ํ†ต์˜ ์ „์•• ์•ˆ์ •์„ ํ™•๋ณดํ•˜๊ณ , ๊ณผ๋„ํ•œ ํƒญ ์กฐ์ • ๋™์ž‘์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” SVR์˜ ์ ์ ˆํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์ด ํ•„์š”ํ•˜๋‹ค. SVR์—์„œ ์ ์ ˆํ•œ ์„ธ๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ, ์ ํ•ฉ๋„๊ฐ€ ๋‹ค์†Œ ๋‚ฎ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒฝ์šฐ ์ด๋Š” ์„ ๋กœ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „์••๋ณ€๋™์„ ์–ต์ œํ•˜์ง€ ๋ชปํ•ด ๋ฐฐ์ „๊ณ„ํ†ต์˜ ํšจ์œจ์„ฑ์„ ์ €ํ•˜์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ณ , ๋˜ํ•œ ๋นˆ๋ฒˆํ•œ ํƒญ ์กฐ์ • ๋™์ž‘์œผ๋กœ ์ธํ•ด SVR์˜ ๊ธฐ๊ณ„์  ์ˆ˜๋ช…์„ ๋‹จ์ถ•์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 2. SVR์˜ ๋ชจ๋“œ ๋ณ„ ์ „์•• ์ œ์–ด์˜์—ญ

Fig. 2. The voltage control regions by modes of SVR

../../Resources/kiee/KIEE.2025.74.1.7/fig2.png

2.2 OpenDSS ์ƒ ์ „์••์กฐ์ •์žฅ์น˜ ์šด์˜ ๊ตฌ์กฐ

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฐ์ „๊ณ„ํ†ต ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์ธ OpenDSS(Open Source Distribution System Simulator) ์ƒ์— ๋ถ„์‚ฐ์ „์›์ด ์—ฐ๊ณ„๋œ ๋ฐฐ์ „๊ณ„ํ†ต์„ ๋ชจ๋ธ๋งํ•˜๊ณ  SVR์˜ ์šด์šฉํŠน์„ฑ์„ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ์ผ์ผ ๋ถ€ํ•˜ ๋ฐ ๋ถ„์‚ฐ์ „์› ๋ฐœ์ „ ํŒจํ„ด์— ๋”ฐ๋ฅธ ํƒญ ๋™์ž‘์„ ํ™•์ธํ•˜๊ณ ์ž ํ•œ๋‹ค. OpenDSS ์ƒ์—์„œ ์ œ๊ณตํ•˜๋Š” SVR ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ๋ณ€์••๊ธฐ์™€ ์ด๋ฅผ ์กฐ์ •ํ•˜๋Š” ์ œ์–ด๊ธฐ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. SVR ์ƒ์—์„œ ๋ณ€๊ฒฝ ๋ฐ ์ œ์–ด ๊ฐ€๋Šฅํ•œ ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํ‘œ 1

๊ณผ ๊ฐ™๋‹ค[13]. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ƒ์—์„œ SVR ์„ค์น˜๋œ ์„ ๋กœ์˜ ์ „์•• ์œ ์ง€๋ฅผ ์œ„ํ•ด, ๋ณ€์ „์†Œ 2์ฐจ์ธก ๋ฐ ์„ ๋กœ ๋‹จ์—์„œ ์œ ์ง€ํ•˜๊ณ ์ž ํ•˜๋Š” ์ „์••์„ Vreg๋กœ ์ž…๋ ฅํ•œ๋‹ค. ์ด๋•Œ, PTratio๋ฅผ Vreg์— ๊ณฑํ•ด ์คŒ์œผ๋กœ์จ ์‹ค์ œ ์ „์••์œผ๋กœ ๋ณ€ํ™˜ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋•Œ ์ „์•• ์•ˆ์ • ๋ฒ”์œ„์˜ ๊ฒฝ์šฐ Vreg๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ „์••์ œ์–ด ๋ถˆ๊ฐ๋Œ€์˜ ๋ฒ”์œ„๋ฅผ Bandwidth๋กœ ์ •์˜ํ•˜๋ฉฐ, ์ด๋ฅผ ์ ˆ๋ฐ˜์œผ๋กœ ๋‚˜๋ˆˆ ๊ฐ’์ด Vreg๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•˜๋Š” ์ „์•• ๋ถˆ๊ฐ๋Œ€, ์ฆ‰ SVR์ด ์ „์••์•ˆ์ •ํ™” ์ƒํƒœ๋ฅผ ํŒ๋‹จํ•˜๋Š” ๋ฒ”์œ„๋กœ ์ •์˜๋œ๋‹ค. OpenDSS ์ƒ์—์„œ SVR์˜ ์ „์••์ œ์–ด ๋™์ž‘ ๊ตฌ๊ฐ„์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•œ ๊ฐœ๋…๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • ์˜ˆ๋ฅผ ๋„์‹œํ•˜๋ฉด ๊ทธ๋ฆผ 3๊ณผ ๊ฐ™๋‹ค.

ํ‘œ 1 OpenDSS์—์„œ ์„ค์ • ๊ฐ€๋Šฅํ•œ SVR ํŒŒ๋ผ๋ฏธํ„ฐ

Table 1 The SVR parameters in OpenDSS

SVR (Regcontrol) in OpenDSS

PTratio

์ œ์–ด ๋Œ€์ƒ ์ธก ์ „์••์„ SVR ์ œ์–ด ์šด์šฉ ์ „์••์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•œ PT ratio

(rev)Vreg

SVR ์ƒ ์ „์•• ๋ถˆ๊ฐ๋Œ€์˜ ๊ธฐ์ค€ ์ „์••์œผ๋กœ, PTratio์™€ ๊ณฑํ•จ์œผ๋กœ์จ SVR ๋‚ด ์ „์••์„ ๋„์ถœ

(rev)band

SVR ์ „์••์ œ์–ด ๋ถˆ๊ฐ๋Œ€, ์ „์•• ์•ˆ์ • ๋ฒ”์œ„

(rev)delay

SVR์ด ์„ค์น˜๋œ ์ง€์ ์˜ ์ „์••์ด ์•ˆ์ •๋ฒ”์œ„๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ๊ฒฝ์šฐ ํƒญ ์ž‘๋™์ด ์‹œ์ž‘๋˜๊ธฐ๊นŒ์ง€์˜ ์ง€์—ฐ ์‹œ๊ฐ„, ๋‹จ์œ„๋Š” ์ดˆ[sec]

(rev)R

SVR์ด ์„ค์น˜๋œ ์„ ๋กœ ์ƒ ์ „์•• ๊ฐ•ํ•˜ ๋ณด์ƒ ์‹œ

R ์„ค์ •๊ฐ’

(rev)X

SVR์ด ์„ค์น˜๋œ ์„ ๋กœ ์ƒ ์ „์•• ๊ฐ•ํ•˜ ๋ณด์ƒ ์‹œ

X ์„ค์ •๊ฐ’

๊ทธ๋ฆผ 3. SVR ์ „์••์ œ์–ด ๊ตฌ๊ฐ„ ์„ค์ •

Fig. 3. SVR voltage control range settings

../../Resources/kiee/KIEE.2025.74.1.7/fig3.png

์ด๋•Œ ๋ฐฐ์ „๊ณ„ํ†ต ์„ ๋กœ์—์„œ ์œ ์ง€ํ•˜๊ณ ์ž ํ•˜๋Š” ์ „์••์„, ๊ตญ๋‚ด ์†กยท๋ฐฐ์ „์šฉ ์ „๊ธฐ์„ค๋น„ ๊ทœ์ •์— ๋”ฐ๋ผ 13,200 [V]๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒฝ์šฐ, ์ด์— ๋”ฐ๋ฅธ ์„ค์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ Vreg๋Š” 120, PTratio๋Š” 110์œผ๋กœ ์„ค์ • ๊ฐ€๋Šฅํ•˜๋‹ค. ์ „์•• ๋ถˆ๊ฐ๋Œ€ ์˜์—ญ์„ 13,200 [V]์˜ 0.95 [p.u.]์—์„œ 1.05 [p.u.]๋กœ ์ง€์ • ์‹œ Deadband๋Š” ยฑ330 [V]๋ฅผ ์ ์šฉํ•˜์—ฌ 6์œผ๋กœ ์„ค์ •ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ด์— ๋”ฐ๋ผ SVR์€ 2์ฐจ์ธก ์ „์••์ด 12,870 [V] ์™€ 13,530 [V] ์‚ฌ์ด์— ํ•ด๋‹นํ•˜๋Š” ๊ฒฝ์šฐ ์ž‘๋™ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ง€์ •๋œ Deadband ์ด๋‚ด๋กœ ์ „์••์„ ์œ ์ง€ํ•˜๋„๋ก ์ „์••์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ band ๋ฒ”์œ„๋ฅผ Vreg ๊ธฐ์ค€์œผ๋กœ ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋„“๊ฒŒ ์„ค์ •ํ•˜๊ฑฐ๋‚˜, ์ „์•• ์•ˆ์ • ๋ฒ”์œ„์— ์—ฌ์œ ๋„๋ฅผ ์ฃผ์ง€ ์•Š๊ณ  ์ข๊ฒŒ ์„ค์ •ํ•˜๋Š” ๊ฒฝ์šฐ, SVR์˜ ์ „์••์ œ์–ด ์‹œ ๋ถˆํ•„์š”ํ•œ ํƒญ ๋™์ž‘์„ ๋ฐœ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์˜คํžˆ๋ ค ๊ณ„ํ†ต ์•ˆ์ •๋„๊ฐ€ ํ•˜๋ฝํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SVR์˜ ์ „์•• ์•ˆ์ • ๋ฒ”์œ„๋ฅผ ๋‹ค์–‘ํ™”ํ•˜์—ฌ ์ „์••์ œ์–ด ์˜ˆ์ธก ์‹œ, ์•ˆ์ •์„ฑ ์ธก๋ฉด์˜ ์ตœ์  ์ œ์–ด ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ณ ์ž ํ•œ๋‹ค.

3. ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ SVR ์ „์••์ œ์–ด ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜

๋ฐฐ์ „๊ณ„ํ†ต ์šด์˜์„ ํ•ด์„ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ถˆํ™•์‹คํ•œ ํŠน์„ฑ์„ ํ•จ๊ป˜ ๊ณ ๋ คํ•˜๋Š” ๊ฒฝ์šฐ, ๋ฐฐ์ „๋ง ์šด์˜์˜ ์•ˆ์ •์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ํ™˜๊ฒฝ ๋ณ€์ˆ˜์— ์˜์กดํ•˜๋Š” ๋ถ„์‚ฐํ˜• ์ „์›์— ๋Œ€ํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ํ•ด์„ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜๋Š” ์ถ”์„ธ์ด๋‹ค. ๋˜ํ•œ ์ตœ๊ทผ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๋ฐ ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์ „๋ ฅ์ˆ˜์š” ๋ฐ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ํšจ์œจ์ ์œผ๋กœ ํƒญ ๋™์ž‘์„ ์ œ์–ดํ•˜๋ ค๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค[10-11]. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ€๋™ํ•˜๋Š” ๋ถ„์‚ฐํ˜• ์ „์›์˜ ์ถœ๋ ฅ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ SVR์˜ ์ด์šฉ๋ฅ ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๊ธฐ๊ณ„ํ•™์Šต์„ ์ ์šฉํ•œ ์ „์••์ œ์–ด ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค.

3.1 Long Short-Term Memory ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ

LSTM์€ RNN์˜ ํ•œ ์ข…๋ฅ˜์ด๋ฉฐ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋‚ด๋ถ€์— ๊ธฐ์–ต์…€์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ๊ณผ๊ฑฐ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์–ตํ•˜๊ณ  ๋‹ค์Œ ํ•™์Šต ๋•Œ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ๊ธฐ์–ต์…€๋กœ ์ธํ•ด ์ž…๋ ฅ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ณ„์—ด ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์–ด, ๊ธด ๊ธฐ๊ฐ„์˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ณ  ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์ตœ์ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. LSTM ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ตฌ์กฐ๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ ˆ์ด์–ด๊ฐ€ ์—ฐ์†๋œ ๊ตฌ์กฐ์ด๋ฉฐ, ๊ทธ๋ฆผ 4์™€ ๊ฐ™๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ๋ณธ์ ์ธ LSTM ๊ตฌ์กฐ๋Š” ๋™์ผํ•˜๋‚˜, ์ž…๋ ฅํ•˜๋Š” ๊ฐ’์— ํŠน์ • ๋ณ€์ˆ˜๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ํ•™์Šต์‹œํ‚ค๋Š” ์–‘์„ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค.

๊ทธ๋ฆผ 4. LSTM ๊ตฌ์กฐ

Fig. 4. LSTM structure

../../Resources/kiee/KIEE.2025.74.1.7/fig4.png

LSTM์€ ํฌ๊ฒŒ Cell state์™€ Hidden state๋กœ ๊ตฌ๋ถ„๋˜๋ฉฐ, gate์˜ ๊ฒฝ์šฐ Forget gate, Input gate ๋ฐ Output gate๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. Forget gate๋Š” state๋กœ๋ถ€ํ„ฐ ์ •๋ณด์˜ ๋ณด์กด ์—ฌ๋ถ€๋ฅผ Sigmoid layer์— ์˜ํ•ด ๊ฒฐ์ •ํ•œ๋‹ค.

(1)
$f_{t}=\sigma(W_{f}\bullet\left[h_{t-1},\: x_{t}\right]+b_{f})$

Input gate๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด Cell state์— ์ €์žฅ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•˜๊ฒŒ ๋œ๋‹ค. ๋‹ค์Œ์œผ๋กœ Sigmoid layer๋ฅผ ๊ฑฐ์ณ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ €์žฅ ์ƒํƒœ๋ฅผ ํŒ๋‹จํ•˜๊ณ , ์ดํ›„ Tanh layer์—์„œ ์ƒˆ๋กœ์šด vector๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์•ž์„  ๊ณผ์ •์ด ์™„๋ฃŒ๋œ ํ›„์— Cell state์— ์—…๋ฐ์ดํŠธ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค.

(2)
$i_{t}=\sigma(W_{i}\bullet\left[h_{t-1},\: x_{t}\right]+b_{i})$
(3)
$\overline {C}_{t}=\tan h(W_{C}\bullet\left[h_{t-1},\: x_{t}\right]+b_{C})$
(4)
$C_{t}=f_{t}\times C_{t-1}+i_{t}\times\overline {C_{t}}$

์ตœ์ข…์ ์œผ๋กœ Tanh layer์™€ Sigmoid layer์˜ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ •๋ณด๋ฅผ ์„ ํƒํ•˜๊ณ , Output gate๋กœ ๋‚ด๋ณด๋‚ด๊ฒŒ ๋œ๋‹ค.

(5)
$o_{t}=\sigma(W_{o}\bullet\left[h_{t-1},\: x_{t}\right]+b_{o})$
(6)
$h_{t}=o_{t}\times\tan h(C_{t})$

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LSTM์„ ํ™œ์šฉํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๋ถ€ํ•˜๋Ÿ‰, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰, ๋ชจ์„ ์˜ ์ „์••, ์œ ํšจ ๋ฐ ๋ฌดํšจ์ „๋ ฅ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ SVR์˜ ๋™์ž‘์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํƒœ์–‘๊ด‘์˜ ๋ถˆํ™•์‹คํ•œ ๋ฐœ์ „๋Ÿ‰์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•˜์—ฌ, ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ์— ์–ด๋ ค์›€์ด ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์ดํ„ฐ์˜ ์ „์ฒ˜๋ฆฌ ๋ฐ ์ถ”๊ฐ€์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋ธ์— ์ ์šฉ์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค.

3.2 OpenDSS ๊ธฐ๋ฐ˜ ๋จธ์‹ ๋Ÿฌ๋‹ ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜

EPRI์—์„œ ๊ฐœ๋ฐœํ•œ OpenDSS๋Š” ๋ฐฐ์ „๊ณ„ํ†ต ์กฐ๋ฅ˜ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ, ํ•ด๋‹น ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•ด ๋ฐฐ์ „๊ณ„ํ†ต ๊ณ„ํš ๋ฐ ๋ถ„์„ ์ˆ˜ํ–‰์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์‹คํšจ์น˜ ๊ธฐ๋ฐ˜์˜ ์ •์ƒ์ƒํƒœ ๋ถ„์„๊ณผ ๋™์  ๋ชจ์˜๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํŠนํžˆ ๋ฐฐ์ „๊ณ„ํ†ต ๋‚ด ๋ถ„์‚ฐํ˜• ์ „์›์— ๋Œ€ํ•œ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๋‹ค. ๋˜ํ•œ ํ”„๋กœ๊ทธ๋žจ ๋‚ด DLL(Dynamic Library Link)์— ๊ตฌํ˜„๋˜์–ด ์žˆ๋Š” COM(Component Object Model) ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ด ์™ธ๋ถ€ ํ”„๋กœ๊ทธ๋žจ์—์„œ ์ˆ˜ํ–‰์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์กด์žฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” OpenDSS ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•ด ๋ถ„์‚ฐ์ „์›์ด ์—ฐ๊ณ„๋œ ๋ฐฐ์ „๊ณ„ํ†ต์„ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๋ถ€ํ•˜๋Ÿ‰๊ณผ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์กฐ๋ฅ˜๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ด๋‹น ์กฐ๋ฅ˜๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ SVR์˜ ๋™์ž‘์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋˜ํ•œ, ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ๋ฐฉ์•ˆ์œผ๋กœ, SVR์˜ ์ „์••์ œ์–ด ๊ตฌ๊ฐ„ ์žฌ์„ค์ •ํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ถ”๊ฐ€ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๊ณ ์ž ํ•˜๋ฉฐ, ์ œ์•ˆ๋œ SVR ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ทธ๋ฆผ 5์™€ ๊ฐ™๋‹ค. ์•ž์—์„œ ์˜ˆ์ธก๋œ ๋ฐ์ดํ„ฐ์˜ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด 4๊ฐ€์ง€ ํšŒ๊ท€์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์˜ค์ฐจ ์‚ฐ์ถœ ๋ฐ ์ •ํ™•๋„ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์—ฐ์† ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด MSE(Mean squared error), RMSE(Root mean squared error), MAPE(Mean absolute percentage error) ๋ฐ WAPE(Weighted absolute percentage error)๋ฅผ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ์จ ์„ ์ •ํ•˜์˜€์œผ๋ฉฐ, ์ˆ˜์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค[14].

(7)
$MSE=\dfrac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}$
(8)
${SE}=\sqrt{\dfrac{1}{{n}}\sum_{{i}=1}^{{n}}({y}_{{i}}-\hat{{y}}_{{i}})^{2}}$
(9)
$MAPE=\dfrac{1}{n}\sum_{i=1}^{n}\left |\dfrac{y_{i}-\hat{y}_{i}}{y_{i}}\right |\times 100$
(10)
$WAPE=\dfrac{\sum_{i=1}^{n}\left | y_{i}-\hat{y}_{i}\right |}{\sum_{i=1}^{n}\left | y_{i}\right |}\times 100$

๊ทธ๋ฆผ 5. ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜

Fig. 5. Machine learning based prediction algorithm

../../Resources/kiee/KIEE.2025.74.1.7/fig5.png

4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜

4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ ๊ตฌ์„ฑ

OpenDSS ์ƒ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด IEEE-33 Bus ๋ฐฐ์ „๊ณ„ํ†ต ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๋ฆผ 6๊ณผ ๊ฐ™๋‹ค. ์ด 6๊ฐœ์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์„ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ๋ถ„์‚ฐ ๋ฐฐ์น˜ํ•˜์˜€์œผ๋ฉฐ, SVR์€ ๊ฐ๊ฐ 11๋ฒˆ ๋ชจ์„ ๊ณผ 12๋ฒˆ ๋ชจ์„ , 27๋ฒˆ๊ณผ 28๋ฒˆ ๋ชจ์„  ์‚ฌ์ด์— ๋ฐฐ์น˜ํ•˜์˜€๋‹ค. ํ•ด๋‹น ๊ณ„ํ†ต์— ๋”ฐ๋ผ SVR์˜ ์ „์••์€ 12,660 [V]๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ „์•• ๋ถˆ๊ฐ๋Œ€ ์˜์—ญ์€ 0.95 [p.u.]์—์„œ 1.05 [p.u.]๋กœ ๊ฐ€์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 6. IEEE-33 Bus ๋ฐฐ์ „๊ณ„ํ†ต ๋ชจ๋ธ

Fig. 6. IEEE-33 Bus distribution system

../../Resources/kiee/KIEE.2025.74.1.7/fig6.png

๋ณธ ๋…ผ๋ฌธ์—์„œ ๋ฐฐ์ „๊ณ„ํ†ต์— ์‚ฌ์šฉํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์˜ ์ถœ๋ ฅ ๋ฐ ๊ฐ ๊ตฌ์—ญ ๋ณ„ ๋ถ€ํ•˜ ๋ฐ์ดํ„ฐ๋Š” ๊ณต๊ณต๋ฐ์ดํ„ฐ ํฌํ„ธ์—์„œ ์ œ๊ณตํ•˜๋Š” 2020๋…„๋„ ์ œ์ฃผ๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋ถ€ํ•˜ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ, ์ผ์ • area ๋‹จ์œ„๋กœ ๋‚˜๋ˆ„์–ด์ง„ ๊ตฌ์—ญ์—์„œ์˜ ํ‰๊ท  ์ถœ๋ ฅ๋Ÿ‰์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋Š” 60๋ถ„ ๊ฐ„๊ฒฉ์œผ๋กœ ์ œ๊ณต๋˜๊ณ  ์žˆ์–ด, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ 1๋ถ„ ๊ฐ„๊ฒฉ์œผ๋กœ ์Šค์ผ€์ผ๋งํ•˜์˜€์œผ๋ฉฐ, ์ ์šฉ๋œ ๋ถ€ํ•˜ ๋ฐ์ดํ„ฐ๋Š” ๊ทธ๋ฆผ 7๊ณผ ๊ฐ™์œผ๋ฉฐ, ๋ถ€ํ•˜์šฉ๋Ÿ‰์€ ํ‘œ 2์™€ ๊ฐ™๋‹ค. ๊ฐ ๊ตฌ์—ญ ๋ณ„ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ๊ฐ 11์›”, 4์›”, 6์›”, 9์›” ํ‰๊ท  ๋ถ€ํ•˜ ๋ฐ์ดํ„ฐ์ด๋ฉฐ, ์ œ์ฃผ ์ง€์—ญ ํŠน์„ฑ์ƒ ์ €๋… ์‹œ๊ฐ„์— ๋ถ€ํ•˜ ์‚ฌ์šฉ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ , ๋˜ํ•œ ๊ณ„์ ˆ์— ๋”ฐ๋ผ ์ „์ฒด ํ‰๊ท  ๋ถ€ํ•˜๋Ÿ‰์˜ ํฌ๊ธฐ๊ฐ€ ๋‹ฌ๋ผ์ง์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 7. Area ๋ณ„ ๋ถ€ํ•˜ ๋ฐ์ดํ„ฐ

Fig. 7. Load data from each area

../../Resources/kiee/KIEE.2025.74.1.7/fig7.png

๊ทธ๋ฆผ 8์€ 4์›” ํ•œ ๋‹ฌ๊ฐ„์˜ ํ‰๊ท  ๋ฐœ์ „๋Ÿ‰์ด๋ฉฐ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „์› ํŠน์„ฑ์ƒ, ์ผ์‚ฌ๋Ÿ‰์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๋Š” ๋‚ฎ ์‹œ๊ฐ„๋Œ€์— ๋น„๊ต์  ์ €๋… ์‹œ๊ฐ„๋ณด๋‹ค ๋†’์€ ๋ฐœ์ „๋Ÿ‰์ด ์ถœ๋ ฅ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ๋ณ„ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์˜ ์„ค๋น„์šฉ๋Ÿ‰๊ณผ ๋ฐฐ์น˜๋˜์–ด ์žˆ๋Š” ๋ชจ์„  ๋ฒˆํ˜ธ๋Š” ํ‘œ 3๊ณผ ๊ฐ™๋‹ค.

๊ทธ๋ฆผ 8. ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์˜ ์ „์ฒด ์ถœ๋ ฅ๋Ÿ‰

Fig. 8. Total PV generation output

../../Resources/kiee/KIEE.2025.74.1.7/fig8.png

ํ‘œ 2 ๋ฐฐ์ „๊ณ„ํ†ต ๋ถ€ํ•˜์šฉ๋Ÿ‰

Table 2 Load capacity in distribution system

Area

1

2

3

4

๋ถ€ํ•˜์šฉ๋Ÿ‰

์œ ํšจ์ „๋ ฅ [MW]

1.595

0.36

0.90

0.86

๋ฌดํšจ์ „๋ ฅ [MVar]

0.78

0.17

0.425

0.925

ํ‘œ 3 ํƒœ์–‘๊ด‘ ๋ฐœ์ „์› ์„ค๋น„์šฉ๋Ÿ‰

Table 3 PV generation capacity

PV

1

2

3

4

5

6

Bus

15

18

20

24

30

33

์„ค๋น„์šฉ๋Ÿ‰ [MW]

0.8

0.75

0.5

0.35

0.7

0.55

OpenDSS์˜ ์กฐ๋ฅ˜๊ณ„์‚ฐ ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 9์™€ ๊ฐ™์œผ๋ฉฐ, SVR 2์ฐจ์ธก์—์„œ ์ธก์ •ํ•œ ์ „๋ ฅ์กฐ๋ฅ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์— ์ž…์‚ฌ๋˜๋Š” ์ผ์‚ฌ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๋Š” ๋‚ฎ ์‹œ๊ฐ„๋Œ€์— ๊ณ„ํ†ต ์ธก ๋ฐฉํ–ฅ์œผ๋กœ Over supply๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ์—ญ์กฐ๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜์˜€์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•ด๋‹น ์‹œ๊ฐ„์— ๊ณผ๋„ํ•œ ์ „์••๋ณ€๋™์ด ๋ฐœ์ƒํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 10์€ SVR์˜ ํƒญ ์กฐ์ • ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์—ญ์กฐ๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ, ๊ณผ์ „์••์œผ๋กœ ์ธํ•ด ํƒญ์ด ๊ฐ์†Œํ•œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ดํ›„ ์ €๋… ์‹œ๊ฐ„์— ํƒœ์–‘๊ด‘ ๋ฐœ์ „์›์˜ ์ถœ๋ ฅ์ด ๊ธ‰๊ฒฉํžˆ ๊ฐ์†Œํ•˜์—ฌ, ์ €์ „์•• ์ƒํ™ฉ์ด ๋ฐœ์ƒํ•˜๋ฉฐ, SVR์€ ํƒญ์„ ์ฆ๊ฐ€์‹œ์ผœ ์ „์••์„ ์œ ์ง€ํ•˜๊ฒŒ ๋œ๋‹ค.

๊ทธ๋ฆผ 9. SVR 2์ฐจ์ธก ์ „๋ ฅ์กฐ๋ฅ˜

Fig. 9. Power flow on the secondary side of the SVR

../../Resources/kiee/KIEE.2025.74.1.7/fig9.png

๊ทธ๋ฆผ 10. SVR ํƒญ ๋™์ž‘ ๊ฒฐ๊ณผ

Fig. 10. SVR tap operation results

../../Resources/kiee/KIEE.2025.74.1.7/fig10.png

4.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ

๋„์ถœ๋œ OpenDSS ๊ฒฐ๊ณผ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ SVR์˜ ํƒญ ๋™์ž‘์— ๋Œ€ํ•œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 11๊ณผ ๊ฐ™๋‹ค. ํ•™์Šต๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ๋ฐœ์ „๋Ÿ‰๊ณผ ๋ถ€ํ•˜๋Ÿ‰์„ ํฌํ•จํ•˜์—ฌ, SVR์˜ 2์ฐจ์ธก ์ „์••, ์œ ํšจ ๋ฐ ๋ฌดํšจ์ „๋ ฅ์˜ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹์€ 5๊ฐœ์˜ ํ•ญ๋ชฉ์ด 1๋ถ„ ๋ฐ์ดํ„ฐ๋กœ ์กด์žฌํ•˜๋ฉฐ, ์ „์ฒด 43,200๊ฐœ์˜ ๋ฐ์ดํ„ฐ์˜ 90% ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ๋˜๊ณ , 10%๋Š” ์˜ˆ์ธก์„ ํ†ตํ•ด ๊ฒฐ๊ณผ๋กœ์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ ์šฉํ•œ LSTM ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ์˜ˆ์ธก์˜ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด Epoch๋Š” 50์œผ๋กœ ์„ ์ •ํ•˜์˜€์œผ๋ฉฐ, Batch size๋Š” ๋ฐ์ดํ„ฐ ํ•™์Šต์˜ ์ œํ•œ์œผ๋กœ ์ธํ•ด, ๊ฐœ์ˆ˜๋ฅผ ๋‚˜๋ˆ ์ฃผ๋Š” ๋ณ€์ˆ˜๋กœ์จ, ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ 512๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, overfitting์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด dropout์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ๋ฌด์ž‘์œ„๋กœ ์ผ๋ถ€ ๋‰ด๋Ÿฐ์„ ์ œ๊ฑฐํ•˜๊ณ , ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ์ดˆ๊ธฐ๊ฐ’์€ 0.5๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ์ˆ˜์น˜๋ฅผ ์„ ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ จ์˜ ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 11. SVR ํƒญ ๋™์ž‘ ์˜ˆ์ธก ๊ฒฐ๊ณผ

Fig. 11. SVR tap operation prediction results

../../Resources/kiee/KIEE.2025.74.1.7/fig11.png

์˜ˆ์ธก๋œ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€์„ ๋•Œ, SVR ๋™์ž‘์˜ ์ถ”์„ธ๋Š” ์œ ์‚ฌํ•˜์ง€๋งŒ 1๋ฒˆ SVR์˜ ๊ฒฝ์šฐ, ๊ณผ๋„ํ•œ ๋™์ž‘์œผ๋กœ ์ด์–ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ƒ์œ„ ํƒญ ๋™์ž‘์—์„œ ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋ฐœ์ƒํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. 2๋ฒˆ SVR์˜ ๊ฒฝ์šฐ, ๋™์ž‘ ์‹œ์ ๊ณผ ํƒญ ์œ„์น˜์˜ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, OpenDSS ๋ชจ์˜ ๊ฒฐ๊ณผ์—์„œ ํƒญ ์กฐ์ • ์‹œ ํ•œ ์Šคํ…์—์„œ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํƒญ ๋™์ž‘์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ์‹ค์ œ๋กœ๋Š” ์‹œ๊ฐ„ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ํ•œ ๋‹จ๊ณ„์—์„œ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํƒญ ๋™์ž‘์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ด๋Š” ์˜ค์ฐจ ๋ฐœ์ƒ์˜ ์ฃผ์š” ์›์ธ์ด ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์•ˆ์„ ์ ์šฉํ•˜๊ณ ์ž ํ•˜๋ฉฐ, Case๋ฅผ 3๊ฐ€์ง€๋กœ ๋‚˜๋ˆ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ณ ์ž ํ•œ๋‹ค. 3๊ฐ€์ง€ Case์˜ ๊ฒฝ์šฐ, OpenDSS ์ƒ์—์„œ SVR์˜ ์ „์••์ œ์–ด ๊ตฌ๊ฐ„์„ ์žฌ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ฐ๊ฐ์˜ ์กฐ๋ฅ˜๊ณ„์‚ฐ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ LSTM ๋ชจ๋ธ์— ์ถ”๊ฐ€ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. Case ๋ณ„ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 12์™€ ๊ฐ™๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ํšŒ๊ท€์ง€ํ‘œํ‰๊ฐ€๋ฅผ ๊ธฐ์ค€์œผ๋กœ Case ๋ณ„ ์˜ˆ์ธก๊ฐ’์— ๋Œ€ํ•œ ์˜ค์ฐจ๋ฅผ ๊ฐ๊ฐ ํ‘œ 4์™€ 5์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Case 3์˜ ๊ฒฝ์šฐ, ์ถ”๊ฐ€ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์…‹์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์œผ๋ฉฐ, ๋ˆ„์  ํ•™์Šต๋œ ๋ฐ์ดํ„ฐ์–‘์ด ๋†’๊ฒŒ ์ ์šฉํ•˜์—ฌ ์ •ํ™•๋„๊ฐ€ ํ–ฅ์ƒ๋œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ, 1๋ฒˆ SVR๊ณผ 2๋ฒˆ SVR ์„ฑ๋Šฅํ‰๊ฐ€์—์„œ 4๊ฐ€์ง€ ์ง€ํ‘œ ๋ชจ๋‘ ์˜ค์ฐจ์œจ์ด ์ ์ฐจ ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•  ๊ฒฝ์šฐ, ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 12. Case ๋ณ„ ์˜ˆ์ธก ๊ฒฐ๊ณผ, SVR 1 : (a), (c), (e), SVR 2 : (b), (d), (f)

Fig. 12. Prediction results by case, SVR 1 : (a), (c), (e), SVR 2 : (b), (d), (f)

../../Resources/kiee/KIEE.2025.74.1.7/fig12.png

ํ‘œ 4 ํƒญ ์˜ˆ์ธก ์„ฑ๋Šฅํ‰๊ฐ€ (SVR 1)

Table 4 Tap prediction performance evaluation (SVR 1)

MSE

RMSE

MAPE

WAPE

Case 1

0.00026

0.01628

1.36046

1.37021

Case 2

0.00026

0.01640

1.39005

1.40100

Case 3

0.00024

0.01556

1.29291

1.29957

ํ‘œ 5 ํƒญ ์˜ˆ์ธก ์„ฑ๋Šฅํ‰๊ฐ€ (SVR 2)

Table 5 Tap prediction performance evaluation (SVR 2)

MSE

RMSE

MAPE

WAPE

Case 1

0.00016

0.01271

1.02711

1.02021

Case 2

0.00017

0.01334

0.99282

0.96763

Case 3

0.00015

0.01258

0.96555

0.98526

5. Conclusion

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฐ์ „๊ณ„ํ†ต ๋‚ด ์—ญ์กฐ๋ฅ˜์™€ ๊ณผ์ „์•• ํ˜„์ƒ์— ์ฃผ๋ชฉํ•˜์—ฌ, ๋ฐฐ์ „์„ ๋กœ์— ์œ„์น˜ํ•œ ์ „์••์กฐ์ •์žฅ์น˜์ธ SVR์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ „์••๋ณ€๋™์œผ๋กœ๋ถ€ํ„ฐ ๋ณดํ˜ธํ•˜๊ณ , ๋ณ€์ „์†Œ์— ์œ„์น˜ํ•œ OLTC์™€์˜ ํ•ฉ๋ฆฌ์ ์ธ ์ „์••์ œ์–ด๋ฅผ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ „์••์ œ์–ด ์˜ˆ์ธก์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ถ„์‚ฐ์ „์›์ด ํฌํ•จ๋œ ๋ฐฐ์ „๊ณ„ํ†ต์˜ ํŠน์„ฑ์ƒ, ์„ ๋กœ ๋ง๋‹จ์—์„œ์˜ ์ „์••์ด ์•ˆ์ •๋ฒ”์œ„๋ฅผ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜๋Š” ํ˜„์ƒ์ด ๋‹ค์ˆ˜ ๋ฐœ์ƒํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๋ณ€์ „์†Œ์— ์œ„์น˜ํ•œ OLTC์™€ ํ˜‘์กฐ์ œ์–ด๋ฅผ ํ†ตํ•ด ๋†’์€ ์•ˆ์ •์„ฑ๊ณผ ํšจ์œจ์„ฑ์„ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณ€์ „์†Œ ์ธก์—์„œ SVR ๋™์ž‘์— ๋Œ€ํ•ด ์‚ฌ์ „ ์˜ํ–ฅ ํ‰๊ฐ€๊ฐ€ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๋„๋ก, ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ SVR ํƒญ ๋™์ž‘์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ OpenDSS ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ƒ IEEE-33 bus ๋ฐฐ์ „๊ณ„ํ†ต ๋ชจ๋ธ์—์„œ ์—ญ์กฐ๋ฅ˜๋กœ ์ธํ•œ SVR์˜ ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๊ณ , ํ•ด๋‹น ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ LSTM ํ•™์Šต๋ชจ๋ธ์„ ๊ตฌ์„ฑ, SVR ํƒญ ๋™์ž‘์— ๋Œ€ํ•œ ์˜ˆ์ธก์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. SVR์˜ ์šด์ „ ํŠน์„ฑ์ƒ, ์ „์••์ œ์–ด ๋ฐฉ์‹์— ๋”ฐ๋ผ ์ •์ƒ์ ์ธ ํƒญ ์ž‘๋™ ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€ํ•œ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์–ด, ์ •ํ™•ํ•œ ์˜ˆ์ธก์˜ ์–ด๋ ค์›€์ด ์กด์žฌํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์˜ˆ์ธก์˜ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด SVR์˜ ์ „์••์ œ์–ด ๊ตฌ๊ฐ„์„ ์žฌ์„ค์ •ํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ถ”๊ฐ€ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ œ์‹œํ•œ ๋ฐฉ์•ˆ์„ ์ ์šฉํ•˜์˜€์„ ๋•Œ, ์˜ˆ์ธก ์ •ํ™•๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ํ–ฅํ›„ SVR ์ธ๊ทผ์— ์œ„์น˜ํ•œ ๋ณ€์ „์†Œ OLTC์™€ ์—ฐ๊ณ„ ์‹œ ์‚ฌ์ „์— SVR์˜ ์˜ํ–ฅ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค๋ฉด, ๋ฐฐ์ „๋ง์„ ํšจ๊ณผ์ ์œผ๋กœ ์šด์˜๋  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜๋ฉฐ, SVR์˜ ํšจ์œจ์„ฑ์€ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.

Acknowledgements

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP, MOTIE) and Korea Electric Power Corporation Grant funded by the Korean government (RS-2023-00232017), (R23XO05-07).

References

1 
Son, Insung, et al., โ€œEvaluation of Greenhouse Gas Reduction Potential of the Korean Green New Deal: Focusing on the Support Programs of New and Renewable Energy Deployment,โ€ Journal of Climate Change Research, vol. 13, no. 3, pp. 325~338, 2023.URL
2 
KEPCO, The transmission, and distribution configuration plan based on the 11 Implementation plan for long-term electricity supply and demand, 2024.URL
3 
Lee, Hyun-Ok, et al., โ€œImprovement method of SVR control in power distribution system interconnected distributed generator,โ€ The Transactions of the Korean Institute of Electrical Engineers, vol. 63, no. 2, pp. 224-229, 2014.DOI
4 
Salih, Shemsedin Nursebo, and Peiyuan Chen, โ€œOn coordinated control of OLTC and reactive power compensation for voltage regulation in distribution systems with wind power,โ€ IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4026-4035, 2015.DOI
5 
Park, Rae-Jin, et al., โ€œVerification of Prediction Method Based on Machine Learning under Wake Effect Using Real-Time Digital Simulator,โ€ Energies, vol. 15, no. 24, pp. 9475, 2024.DOI
6 
Oyando, Harold Chisano, Kahoro Wachira, and Henry Pwani Likare, โ€œOptimal OLTC Control Using ML Algorithms for Synchronous Generator Integration with Off-Grid Renewable Energy in Kenya,โ€ 2023 IEEE AFRICON, IEEE, pp. 01-06, 2023.DOI
7 
Oyando, Harold Chisano, Timothy Ngumbi Kanyolo, and Choong-koo Chang, โ€œRNN-based main transformer OLTC control for SMR integration into a high renewable energy penetrated grid,โ€ Journal of Electrical Engineering & Technology, vol. 18, no. 4, pp. 2537-2549, 2023.DOI
8 
Schiessling, Joachim, et al., โ€œPrediction of on-load tap-changer switch time from vibroacoustic measurements by machine learnings,โ€ 23rd International Symposium on High Voltage Engineering, vol. 2023, no. 46, pp. 350-354, 2023.DOI
9 
Saehwan Lim, Gyeong-Hun Kim, โ€œCoordinated Voltage Control for Reducing OLTC Operation in Distribution Network With High PV Penetration,โ€ The Transactions of the Korean Institute of Electrical Engineers, vol. 71, no. 8, pp. 1047~1053, 2022.URL
10 
Yoon, Kwang-Hoon, et al., โ€œOperation method of on-load tap changer on main transformer considering reverse power flow in distribution system connected with high penetration on photovoltaic system,โ€ Energies, vol. 15, no. 17, pp. 6473, 2022.DOI
11 
Rockwill electric group, โ€œBasic knowledges of step voltage regulator,โ€ 2020.URL
12 
SCHWETIZERใ€€ENGINEERING LABORATORIES, โ€œSEL-2431 Voltage Regulator Control Instruction Manual,โ€ 2023.URL
13 
EPRI, โ€œThe open distribution system simulator reference guide,โ€ 2022.URL
14 
Kim, Jeong-Hwan, et al., โ€œA Design of the Real-Time Simulation for Wind Turbine Modeling with Machine Learning,โ€ Journal of Electrical Engineering & Technology, vol. 18, no. 4, pp. 3277-3285, 2023.DOI

์ €์ž์†Œ๊ฐœ

์œ ๋ณ‘์ฐฌ(Byungchan Yoo)
../../Resources/kiee/KIEE.2025.74.1.7/au1.png

He received the B.S. and M.S. degrees in electrical engineering from Hanbat National University, Daejeon, Korea. He is currently pursuing a Ph.D. degree at University of Seoul, Korea. His research interests include power flow analysis and renewable energy resources.

์ตœ์›๋‚˜(Wonna Choi)
../../Resources/kiee/KIEE.2025.74.1.7/au2.png

She received the B.S. and M.S degrees in electrical engineering from Hanbat National University, Daejeon, South Korea. She is currently working as a researcher at University of Seoul, Korea. Her research interests include power flow analysis and distribution system.

์ •์Šน๋ฏผ(Seungmin Jung)
../../Resources/kiee/KIEE.2025.74.1.7/au3.png

He received the B.S. and M.S. and Ph.D. degrees in electric engineering from Korea University, Seoul, Korea. He was a Research professor with the School of Electrical Enginnering, Korea University for seven months and was a professor with the Deartment of Electrical Enginneing, Hanbat National University, Daejeon, Korea. Since 2024, he has been with the Department of Electrical and Computer Engineering, University of Seoul, Seoul, Korea. His research interests include IBR resources and Grid-Forming.