• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical and Computer Engineering, Sungkyunkwan University , Republic of Korea.)



Constraint Optimization, IPMSM, Modified PSO-GA, Torque, Torque Ripple

1. ์„œ ๋ก 

IPMSM์˜ ๊ฒฝ์šฐ ๋งˆ๊ทธ๋„คํ‹ฑ ํ† ํฌ ์„ฑ๋ถ„ ๋ฟ ์•„๋‹ˆ๋ผ d, q์ถ• ์ธ๋•ํ„ด์Šค ์ฐจ์ด์— ๊ธฐ์ธํ•˜๋Š” ๋ฆด๋Ÿญํ„ด์Šค ์„ฑ๋ถ„์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ๋‹ค๋ฅธ ํƒ€์ž…์˜ ์ „๋™๊ธฐ์— ๋น„ํ•ด ๊ณ ํšจ์œจ, ๊ณ ์ถœ๋ ฅ์˜ ํŠน์„ฑ์„ ๊ฐ€์ง„๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค[1]. ๊ทธ๋Ÿฌ๋‚˜ ํšŒ์ „์ž ํ‘œ๋ฉด์— ์ž์„์ด ์œ„์น˜ํ•œ SPMSM๊ณผ ๋‹ฌ๋ฆฌ ์ž์„์ด ๋งค์ž…๋˜์–ด ์žˆ๋Š” ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ํ† ํฌ ๋ฆฌํ”Œ ์„ฑ๋ถ„์ด ํฌ๋‹ค๋Š” ๋‹จ์ ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Š” ๋ชจํ„ฐ์˜ ์ง„๋™๊ณผ ์†Œ์Œ์˜ ์›์ธ์ด ๋˜๊ณ  ๋ชจํ„ฐ ์ œ์–ด์„ฑ ์ €ํ•˜๋ฅผ ์œ ๋ฐœํ•œ๋‹ค[2]. ๋”ฐ๋ผ์„œ IPMSM ์„ค๊ณ„ ์‹œ ํ† ํฌ ๋ฆฌํ”Œ ์ €๊ฐ์„ ์œ„ํ•œ ์„ค๊ณ„๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค.

ํ† ํฌ ๋ฐ ํ† ํฌ ๋ฆฌํ”Œ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ์„ค๊ณ„์˜ ๊ฒฝ์šฐ, ๋‘ ์„ฑ๋Šฅ ๊ฐ„์˜ ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด Particle Swarm Optimization(PSO), Genetic Algorithm(GA) ๋“ฑ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋“ค์ด ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค[3]. ๊ทธ๋Ÿฌ๋‚˜ ์„ค๊ณ„ ๋ณ€์ˆ˜๊ฐ€ ๋งŽ์€ IPMSM์˜ ๊ฒฝ์šฐ, ์„ค๊ณ„ ๊ฐ€๋Šฅํ•œ ๋ณ€์ˆ˜ ๋ฒ”์œ„์— ๋Œ€ํ•œ ๋‹ค์ˆ˜์˜ ์ œํ•œ ์กฐ๊ฑด์ด ์กด์žฌํ•˜๋ฉฐ ์ตœ์ ํ™” ์˜์—ญ ๋‚ด์—์„œ ์„ค๊ณ„๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์˜์—ญ์ด ์กด์žฌํ•˜๊ฒŒ ๋œ๋‹ค. ๊ธฐ์กด์˜ PSO ๋ฐ GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ ์ œํ•œ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ์ตœ์ ํ™” ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ํŒจ๋„ํ‹ฐ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์กด์žฌํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ด์™€ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ, ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๊ณผ์ • ์ค‘ ๊ตญ์†Œ ์ตœ์ ํ•ด์— ๋น ์งˆ ์œ„ํ—˜์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ, ์ ์ ˆํ•œ ๊ณ„์ˆ˜ ์‚ฐ์ •์„ ์œ„ํ•ด ๋งŽ์€ ์‹œํ–‰์ฐฉ์˜ค๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์กด์žฌํ•œ๋‹ค[4].

๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŒจ๋„ํ‹ฐ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์„ค๊ณ„ ์ œํ•œ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์šฐ์„  ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋ฅผ ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, Modified PSO ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋ฅผ ๊ฒฐํ•ฉ์‹œํ‚ด์œผ๋กœ์จ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๊ณผ์ • ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ•„์š”ํ•œ ์‹œ๊ฐ„ ์†Œ์š”๋ฅผ ์ค„์ด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๊ตญ์†Œ ์ตœ์ ํ•ด๋กœ ์ˆ˜๋ ดํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Modified GA๋ฅผ ๊ฒฐํ•ฉํ•œ Hybrid ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ ์ž…์ž๊ฐ€ ์ž์‹ ์˜ ์ตœ์  ์œ„์น˜์™€ ์ „์ฒด ์ž…์ž์˜ ์ตœ์  ์œ„์น˜๋ฅผ ๊ธฐ์–ตํ•˜๋Š” PSO์˜ ์žฅ์ ๊ณผ ์ „์—ญ ํƒ์ƒ‰ ๋Šฅ๋ ฅ์ด ์šฐ์ˆ˜ํ•œ GA์˜ ์žฅ์ ์„ ๋ชจ๋‘ ๋ณด์œ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค[5].

Section 2์—์„œ๋Š” ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, Modified PSO, Modified GA ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์„ค๋ช…๊ณผ ์ „์ฒด ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋™์ž‘์— ๋Œ€ํ•œ Flow Chart๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๊ทธ ํ›„ Section 3์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๊ฒ€์ฆ์„ ์œ„ํ•ด, ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” Test Function์„ ํ†ตํ•ด PSO, GA, Modified PSO-GA Hybrid ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Section 4์—์„œ 3๊ฐ€์ง€ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ EV ๊ตฌ๋™์šฉ Double V-Type IPMSM์˜ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

2. Random Forest-Based Modified PSO-GA Hybrid Algorithm

2.1 Random Forest

๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋Š” ๊ฒฐ์ • ํŠธ๋ฆฌ(Decision Tree)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์•™์ƒ๋ธ” ๊ธฐ๋ฒ•์œผ๋กœ ์—ฌ๋Ÿฌ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋‹จ์ผ ์˜ˆ์ธก ๋ชจ๋ธ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค. ์•™์ƒ๋ธ” ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ๋ฒ ๊น…์€ ๋‹ค์ˆ˜์˜ ๋ฐ์ดํ„ฐ์…‹์„ ์ƒ์„ฑํ•œ ๋’ค, ๊ฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ์˜ˆ์ธก ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ์‹์ด๋‹ค. ์ด๋•Œ, ๊ฐ ์˜ˆ์ธก ๋ชจ๋ธ์€ ํšŒ๊ท€๋‚˜ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ตœ์ข… ์˜ˆ์ธก ๊ฐ’์€ ๊ฐœ๋ณ„ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๊ฐ’์„ ํ‰๊ท ํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ๊ทธ๋ฆผ 1์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋“ฏ์ด, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์—์„œ์˜ ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘ ๊ณผ์ •์€ ์ฃผ์–ด์ง„ ํ•™์Šต ๋ฐ์ดํ„ฐ์—์„œ ๋ฌด์ž‘์œ„๋กœ ์ƒ˜ํ”Œ์„ ๋ณต์› ์ถ”์ถœํ•˜์—ฌ ์—ฌ๋Ÿฌ ๋ถ€ํŠธ์ŠคํŠธ๋žฉ ์ƒ˜ํ”Œ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ƒ์„ฑ๋œ ๊ฐ ์ƒ˜ํ”Œ์„ ์ด์šฉํ•ด ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ํ•™์Šต์‹œํ‚ด์œผ๋กœ์จ ๋ชจ๋ธ์˜ ๋‹ค์–‘์„ฑ๊ณผ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋Š” ํŠนํžˆ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๊ณ , ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ๊ณผ ์žก์Œ ์ฒ˜๋ฆฌ์— ๊ฐ•์ ์„ ๋ณด์—ฌ ๋งŽ์€ ๋ณ€์ˆ˜๋ฅผ ๋‹ค๋ฃฐ ๋•Œ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค[6]. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ ๋ณ€์ˆ˜๊ฐ’์— ๋”ฐ๋ฅธ ์„ค๊ณ„ ์ œํ•œ ์กฐ๊ฑด ๋งŒ์กฑ ์—ฌ๋ถ€๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋กœ์จ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 1. Random Forest๋ฅผ ํ™œ์šฉํ•œ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ๊ตฌ์กฐ

Fig. 1. Structure of Random Forest as a Classification Model

../../Resources/kiee/KIEE.2025.74.2.266/fig1.png

2.2 Modified PSO

PSO๋Š” GA๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๋ฌด์ž‘์œ„ ํ•ด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ดˆ๊ธฐ ์ง‘๋‹จ์„ ๊ตฌ์„ฑํ•˜๊ณ , ์—ฐ์†์ ์ธ ๋ฐ˜๋ณต์„ ํ†ตํ•ด ์ „์—ญ ์ตœ์ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค[7]. ๊ทธ๋Ÿฌ๋‚˜ PSO๋Š” ๊ต์ฐจ(crossover)๋‚˜ ๋Œ์—ฐ๋ณ€์ด(mutation) ๊ณผ์ •์ด ์—†์œผ๋ฉฐ, ์ž…์ž๋“ค์ด ์ตœ์ ์˜ ์ž…์ž ์œ„์น˜๋ฅผ ๋”ฐ๋ฅด๋ฉฐ ๋ฌธ์ œ ๊ณต๊ฐ„์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค. PSO์˜ ๊ธฐ๋ณธ ๊ฐœ๋…์€ ์ž…์ž์˜ ์†๋„๊ฐ€ ๋งค ์‹œ์ ๋งˆ๋‹ค ๊ฐœ์ธ ์ตœ์  ์œ„์น˜($p Best$)์™€ ์ง‘๋‹จ ์ตœ์  ์œ„์น˜($g Best$) ์‚ฌ์ด์—์„œ ๋ณ€ํ™”ํ•˜์—ฌ ์ž ์žฌ์ ์ธ ํ•ด๋ฅผ ํ–ฅํ•ด ๋‚˜์•„๊ฐ„๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ˆ˜ํ•™์ ์œผ๋กœ, ์ž…์ž ์ง‘๋‹จ์€ ํƒ์ƒ‰ ๊ณต๊ฐ„ ๋‚ด์— ๋ฌด์ž‘์œ„๋กœ ์ดˆ๊ธฐํ™”๋˜๊ณ , $D$์ฐจ์› ๊ณต๊ฐ„์„ ์ด๋™ํ•˜๋ฉฐ ์ตœ์ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. $x_{k}^{i}$์™€ $v_{k}^{i}$๋ฅผ ๊ฐ๊ฐ $k$๋ฒˆ์งธ ๋ฐ˜๋ณต์—์„œ $i$๋ฒˆ์งธ ์ž…์ž์˜ ์œ„์น˜์™€ ์†๋„๋กœ ์ •์˜ํ•  ๋•Œ, $k+1$ ๋ฒˆ์งธ ๋ฐ˜๋ณต์—์„œ ์†๋„์™€ ์œ„์น˜๋Š” ์‹ (1)๊ณผ ์‹ (2)๋ฅผ ํ†ตํ•ด ๊ตฌํ•ด์ง„๋‹ค.

(1)
$v_{k+1}^{i}=w๏ผŠv_{k}^{i}+ c_{1}๏ผŠr_{1}๏ผŠ(p_{k}^{i}- x_{k}^{i})+c_{2}๏ผŠr_{2}๏ผŠ(p_{k}^{g}-x_{k}^{i})$
(2)
$x_{k+1}^{i}= x_{k}^{i}+ v_{k+1}^{i}$

์—ฌ๊ธฐ์„œ $w$๋Š” ๊ด€์„ฑ ๊ณ„์ˆ˜(inertia), $c_{1}$๊ณผ $c_{2}$๋Š” ์ƒ์ˆ˜์ด๋ฉฐ, $r_{1}$๊ณผ $r_{2}$๋Š” [0 1] ๋ฒ”์œ„์˜ ๋‚œ์ˆ˜์ด๋‹ค. ๋˜ํ•œ $p_{k}^{i}$๋Š” $i$๋ฒˆ์งธ ์ž…์ž์˜ ์ตœ์  ์œ„์น˜, $p_{k}^{g}$์€ ์ง‘๋‹จ์˜ ์ „์—ญ ์ตœ์  ์œ„์น˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™”์˜ ์ฃผ์š” ๋‹จ๊ณ„๋Š” Algorithm 1์˜ Pseudo code๋กœ ์š”์•ฝ๋  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ Algorithm 1๊ณผ ๊ฐ™์€ ๊ธฐ์กด์˜ PSO๋ฅผ ํ†ตํ•ด IPMSM์˜ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค๋ฉด, ๊ทธ๋ฆผ 2(a)์™€ ๊ฐ™์ด ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์—์„œ๋„ ํƒ์ƒ‰์ด ์ง„ํ–‰๋˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋ฆผ 2๋Š” t-SNE ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ตœ์ ํ™” ์˜์—ญ์„ 2์ฐจ์›์œผ๋กœ ์‹œ๊ฐํ™”ํ•œ ์˜์—ญ์˜ ์ผ๋ถ€๋ถ„์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ, ๋…น์ƒ‰ ์˜์—ญ์€ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ, ๋ถ‰์€์ƒ‰ ์˜์—ญ์€ ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋•Œ ๋ชฉ์ ํ•จ์ˆ˜ ๊ณ„์‚ฐ์— ๋Œ€ํ•œ ์‹œ๊ฐ„๋น„์šฉ์ด ํฐ ๊ฒฝ์šฐ์—๋Š” ์ด์— ๋”ฐ๋ฅธ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ์‹œ๊ฐ„์ด ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค.

๊ทธ๋ฆผ 2. ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ž…์ž ์ด๋™ ๊ฒฝ๋กœ

Fig. 2. Particle Trajectories Based on Optimization Methods

../../Resources/kiee/KIEE.2025.74.2.266/fig2.png

๊ทธ๋ฆผ 2(b)์—์„œ Modified PSO ์ˆ˜ํ–‰ ๊ณผ์ • ์ค‘, ํ•œ ๋ฒˆ์˜ ๋ฐ˜๋ณต ๋™์•ˆ์˜ ์ž…์ž์˜ ์ด๋™ ๊ฒฝ๋กœ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Modified PSO์—์„œ ์ž…์ž๊ฐ€ ์ด๋™ํ•  ๋•Œ, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ๋งค ์‹œ์ ๋งˆ๋‹ค ์ž…์ž ์œ„์น˜์— ๋Œ€ํ•œ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ์ž…์ž ์œ„์น˜๊ฐ€ ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์— ์กด์žฌํ•œ๋‹ค๋ฉด ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•˜์ง€ ์•Š๊ณ  ๋‹ค์Œ ์ž…์ž ์œ„์น˜๋กœ ์ด๋™ํ•˜๊ฒŒ ๋˜๋ฉฐ ์ด ๊ณผ์ •์€ ์ž…์ž๊ฐ€ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต๋œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด Modified PSO ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์—์„œ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ•„์š”ํ•œ ์‹œ๊ฐ„ ์†Œ์š”๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ํŠนํžˆ FEM ํ•ด์„๊ณผ ๊ฐ™์ด ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•˜๋Š”๋ฐ ๊ธด ์‹œ๊ฐ„์ด ์†Œ์š”๋˜๋Š” ๊ฒฝ์šฐ ํ•ด์„ ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ ํฐ ์ด์ ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์•„๋ž˜์˜ Algorithm 2๋Š” Modified PSO์˜ Pseudo code๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ Algorithm 2์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋“ฏ์ด, Modified PSO ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ ์„ค๊ณ„ ์ œํ•œ ์กฐ๊ฑด ์˜์—ญ์„ ๋ฐฐ์ œํ•˜๊ณ  ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์œผ๋กœ ๋‹จ๋ฒˆ์— ๋›ฐ์–ด๋„˜๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด, ์ž…์ž์˜ ์ˆ˜๋ ด ์†๋„๊ฐ€ ์ง€๋‚˜์น˜๊ฒŒ ๋นจ๋ผ์ง€๊ณ  ํƒ์ƒ‰ ๊ณผ์ •์—์„œ ์ „์—ญ ์ตœ์ ํ•ด์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•˜๊ณ  ์ง€์—ญ ์ตœ์ ํ•ด๋กœ ์ˆ˜๋ ดํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด์™€ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ ์•ˆ์—์„œ ์ž…์ž์˜ ์ด๋™ ๊ฐ€๋Šฅ ๋ฒ”์œ„๋ฅผ ์ œํ•œํ•˜์˜€๋‹ค. ๋˜ํ•œ Section 2.3์—์„œ ์†Œ๊ฐœ๋˜๋Š” Modified GA์™€์˜ ๊ฒฐํ•ฉ์„ ํ†ตํ•ด ์ง€์—ญ ์ตœ์ ํ•ด๋กœ์˜ ์ˆ˜๋ ด์„ ๋ฐฉ์ง€ํ•˜๊ณ , ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์œผ๋กœ ์ž…์ž๊ฐ€ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

2.3 Modified GA

์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•ด ์ง‘๋‹จ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ง„ํ™”์‹œํ‚ด์œผ๋กœ์จ ์ „์—ญ ์ตœ์ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ดˆ๊ธฐ ์ง‘๋‹จ์„ ๋ฌด์ž‘์œ„๋กœ ์ƒ์„ฑํ•œ ํ›„, ๊ฐ ์„ธ๋Œ€์— ๊ฑธ์ณ ์ ํ•ฉ๋„ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ์ฒด์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์„ ํƒ, ๊ต์ฐจ, ๋ณ€์ด ์—ฐ์‚ฐ์„ ์ ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ํ•ด๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ๋ณด๋‹ค ์ ํ•ฉํ•œ ํ•ด๊ฐ€ ๋‹ค์Œ ์„ธ๋Œ€๋กœ ์ด์–ด์ง€๊ฒŒ ํ•œ๋‹ค[8]. Algorithm 3์˜ Pseudo code์— ์ œ์‹œ๋œ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ผ๋ฐ˜์ ์ธ ํ๋ฆ„์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋จผ์ €, ๋ชฉํ‘œ ํ•จ์ˆ˜์™€ ์ ํ•ฉ๋„ ํ•จ์ˆ˜๊ฐ€ ์ •์˜๋˜๋ฉฐ, ์ดˆ๊ธฐ ํ•ด ์ง‘๋‹จ์ด ์„ค์ •๋œ๋‹ค. ๊ต์ฐจ ํ™•๋ฅ ($p_{c}$)๊ณผ ๋ณ€์ด ํ™•๋ฅ ($p_{m}$)์ด ์ดˆ๊ธฐํ™”๋œ ํ›„, ๊ต์ฐจ ๋ฐ ๋ณ€์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ํ•ด๋ฅผ ๋‹ค์Œ ์„ธ๋Œ€์— ํฌํ•จ์‹œํ‚จ๋‹ค. ์ด ๊ณผ์ •์€ ์ตœ๋Œ€ ๋ฐ˜๋ณต ํšŸ์ˆ˜๋‚˜ ์ตœ์†Œ ์˜ค์ฐจ ๊ธฐ์ค€์„ ๋งŒ์กฑํ•  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต๋œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํƒ์ƒ‰์˜ ๋‹ค์–‘์„ฑ๊ณผ ์ˆ˜๋ ด ์†๋„ ๊ฐ„์˜ ๊ท ํ˜•์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋ณต์žกํ•œ ๊ณตํ•™์  ๋ฌธ์ œ์˜ ์ตœ์ ํ™”์— ์œ ๋ฆฌํ•œ ํŠน์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค.

Section 2.2์—์„œ ์–ธ๊ธ‰ํ•œ Modified PSO์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํƒ์ƒ‰์˜ ๋‹ค์–‘์„ฑ์„ ์ค‘์ ์ ์œผ๋กœ ํ•˜๋Š” Modified GA ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ธฐ์กด์˜ ์ ํ•ฉ๋„ ํŒ๋ณ„์„ ํ†ตํ•œ Selection ๊ณผ์ •์„ ์ œ๊ฑฐํ•˜๊ณ , Crossover, Mutation ๋ฐฉ๋ฒ•์„ ์ฐจ๋ก€๋กœ ์ ์šฉํ•˜์˜€๋‹ค. Crossover ๋ฐฉ๋ฒ•์„ ์šฐ์„  ์‚ฌ์šฉํ•˜์—ฌ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์œผ๋กœ ์ด๋™ํ•  ํ™•๋ฅ ์„ ๋†’์ด๊ณ ์ž ํ•˜์˜€์œผ๋ฉฐ, 100๋ฒˆ์˜ ๋ฐ˜๋ณต ํ›„์—๋„ ์ž…์ž๊ฐ€ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ–ˆ๋‹ค๋ฉด, Mutation ๊ณผ์ •์„ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณตํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์•„๋ž˜์˜ Algorithm 4์—์„œ Modified GA์˜ Pseudo code๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

2.4 Selection of Global Best Position

Modified PSO-GA Hybrid ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ PSO๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ˆ˜ํ–‰๋˜๋Š” ์ตœ์ ํ™” ๊ณผ์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ „์—ญ ์ตœ์ ํ•ด์ธ $g Best$์˜ ์œ„์น˜๋ฅผ ์„ ์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. PSO๋ฅผ ํ†ตํ•œ ๋‹ค์ค‘ ๋ชฉ์ ํ•จ์ˆ˜ ์ตœ์ ํ™” ์ˆ˜ํ–‰์˜ ๊ฒฝ์šฐ, ๊ฐ ๋ชฉ์ ํ•จ์ˆ˜์— ๊ฐ€์ค‘์น˜๋ฅผ ๊ณฑํ•œ ํ•ฉ์„ ์ตœ์ข… ๋ชฉ์ ํ•จ์ˆ˜๋กœ ์„ค์ •ํ•˜์—ฌ ์ตœ์ ํ™”๋ฅผ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Iteration ๋ณ„๋กœ Pareto Front ์œ„์˜ ์ž…์ž๋“ค ์ค‘ ์ตœ์ข… ๋ชฉ์ ํ•จ์ˆ˜์˜ ๊ฐ’์ด ๊ฐ€์žฅ ํฐ ์ž…์ž์˜ ์œ„์น˜๋ฅผ $g Best$๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด๋•Œ ๊ฐ€์ค‘์น˜๋Š” ํ† ํฌ 0.5, ํ† ํฌ ๋ฆฌํ”Œ โ€“0.5๋กœ ์„ค์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 3. Pareto Front๋ฅผ ํ†ตํ•œ $g Best$ ์œ„์น˜ ์„ ์ •

Fig. 3. Position Selection through Pareto Front

../../Resources/kiee/KIEE.2025.74.2.266/fig3.png

2.5 Random Forest-Based Modified PSO-GA Hybrid Algorithm

Section 2.1~2.3์—์„œ ์„ค๋ช…ํ•œ Random Forest, Modified PSO, Modified GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฒฐํ•ฉํ•˜์—ฌ, ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์ด ์กด์žฌํ•  ๋•Œ, ํšจ์œจ์ ์ธ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 4์—์„œ Random Forest-Based Modified PSO-GA Hybrid ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ Flow chart๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ฃผ์š” ๋‹จ๊ณ„๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜์˜€๋‹ค. ์ดˆ๊ธฐํ™” ๋‹จ๊ณ„์—์„œ ์ž…์ž๋“ค์˜ ์ดˆ๊ธฐ ์œ„์น˜์™€ ์†๋„๋ฅผ ์„ค์ •ํ•˜๊ณ , Modified PSO ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ดˆ๊ธฐ ํƒ์ƒ‰์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์€ ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ๊ณผ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์„ ๊ตฌ๋ถ„ํ•˜๋Š”๋ฐ ํ™œ์šฉ๋˜๋ฉฐ, ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์— ์œ„์น˜ํ•œ ์ž…์ž์˜ ๋ชฉ์ ํ•จ์ˆ˜ ๊ณ„์‚ฐ์„ ์ƒ๋žตํ•จ์œผ๋กœ์จ ์ตœ์ ํ™” ์ˆ˜ํ–‰์˜ ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•œ ์ž…์ž์— ๋Œ€ํ•ด Modified GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ, Crossover์™€ Mutation ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์„ค๊ณ„ ๊ฐ€๋Šฅ ์˜์—ญ์œผ๋กœ ์ž…์ž๊ฐ€ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ PSO์˜ ์ž…์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•œ ๋น ๋ฅธ ํƒ์ƒ‰ ๋Šฅ๋ ฅ๊ณผ GA์˜ ์ „์—ญ ํƒ์ƒ‰ ๋Šฅ๋ ฅ์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ์‹œ๊ฐ„์„ ์ค„์ด๋ฉฐ ๋™์‹œ์— ์ „์—ญ ์ตœ์ ํ•ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค.

๊ทธ๋ฆผ 4. ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ PSO-GA ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์•Œ๊ณ ๋ฆฌ์ฆ˜

Fig. 4. Random Forest-Based PSO-GA Hybrid Algorithm

../../Resources/kiee/KIEE.2025.74.2.266/fig4.png

3. Verification of Modified PSO-GA Hybrid Algorithm

๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ PSO-GA Hybrid ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ๊ฒ€์ฆ์„ ์œ„ํ•ด Test Function์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

3.1 Test Function

์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด Constrained Test Function ์ค‘ ํ•˜๋‚˜์ธ G1 ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด ํ•จ์ˆ˜๋Š” ๋ณต์žกํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌํ•จํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํƒ์ƒ‰ ๋Šฅ๋ ฅ๊ณผ ์ œ์•ฝ ์˜์—ญ ๋‚ด์˜ ํ•ด๋ฅผ ์ฐพ๋Š” ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค[9]. ์‹ (3)์€ G1 ํ•จ์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์‹ (4)์™€ (5)๋Š” ๊ฐ ๋ณ€์ˆ˜์˜ ๋ฒ”์œ„์™€ ์ œํ•œ ์กฐ๊ฑด์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋•Œ G1ํ•จ์ˆ˜์˜ ์ „์—ญ ์ตœ์ ํ•ด ๊ฐ’์€ โ€“15์ด๋‹ค.

(3)
$f(x)= 5x_{1}+5x_{2}+5x_{3}+5x_{4}-5(\sum_{i=1}^{4}x_{i})^{2}-5(\sum_{i=1}^{4}x_{i})^{3}$
(4)
\begin{align*}0\le x_{i}\le 1{}\quad{for}\quad{i}=1,\: 2...9,\: 13\\0\le{x}_{{i}}\le 100{}\quad{for}\quad{i}= 10,\: 11,\: 12\end{align*}
(5)
\begin{align*}g_{1}(x)= 2x_{1}+2x_{2}+x_{10}+x_{11}-10\le 0\\g_{2}(x)= 2x_{1}+2x_{3}+x_{10}+x_{12}-10\le 0\\g_{3}(x)= 2x_{2}+2x_{3}+x_{11}+x_{12}-10\le 0\\g_{4}(x)= -8x_{1}+x_{10}\le 0\\g_{5}(x)= -8x_{2}+x_{11}\le 0 \\g_{6}(x)= -8x_{3}+x_{12}\le 0\\g_{7}(x)= -2x_{4}-x_{5}+x_{10}\le 0\\g_{8}(x)= -2x_{6}-x_{7}+x_{11}\le 0\\g_{9}(x)= -2x_{8}-x_{9}+x_{12}\le 0\end{align*}

3.2 Performance Evalutation of Modified PSO-GA Algorithm

PSO, GA, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ Modified PSO-GA Hybrid ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ G1 ํ•จ์ˆ˜์˜ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๋ฆผ 5์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ 5. Modified PSO-GA, PSO, GA ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ G1 ํ•จ์ˆ˜์˜ ์ˆ˜๋ ด ์†๋„ ๋น„๊ต

Fig. 5. Comparison of Convergence Speeds for G1 Function Using Modified PSO-GA, PSO and GA Methods

../../Resources/kiee/KIEE.2025.74.2.266/fig5.png

์ด๋ฅผ ํ†ตํ•ด ์ œํ•œ๋œ ์˜์—ญ์ด ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ์— Modified PSO-GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜๋ ด ์†๋„๊ฐ€ PSO, GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋น„ํ•ด ์ˆ˜๋ ด์†๋„๊ฐ€ ๋” ๋น ๋ฅด๊ณ , ์ง€์—ญ ์ตœ์ ํ•ด๋กœ ๋น ์ง€์ง€ ์•Š๊ณ  ์ „์—ญ ์ตœ์ ํ•ด๋กœ ์ˆ˜๋ ดํ•œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

4. Optimization Results

์ด ์ ˆ์—์„œ๋Š” PSO, GA, Modified PSO-GA Hybrid ๋ฐฉ๋ฒ•์— ์˜ํ•œ Double V-Type IPMSM ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Section 3์—์„œ ๋‹จ์ผ ๋ชฉ์ ํ•จ์ˆ˜ G1์— ๋Œ€ํ•œ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค๋ฉด, Section 4์—์„œ๋Š” ํ† ํฌ์™€ ํ† ํฌ ๋ฆฌํ”Œ์— ๋Œ€ํ•œ ๋‹ค๋ชฉ์  ์ตœ์ ํ™”๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

4.1 Design Constraints

์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ์œจ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ๊ฐ์˜ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ๊ทธ๋ฆผ 6์— ๋‚˜ํƒ€๋‚œ ๋™์ผํ•œ ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ณ€์ˆ˜์˜ ๋ฒ”์œ„๋Š” ํ‘œ 1๊ณผ ๊ฐ™๋‹ค. ์ด๋•Œ ์ž์„ ์‚ฌ์šฉ๋Ÿ‰์€ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜์˜€์œผ๋ฉฐ, ์ „์•• ๋ฐ ์ „๋ฅ˜ ์ œํ•œ ์กฐ๊ฑด, ์ตœ๋Œ€ ๋™์ž‘์ ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ํ‘œ 2์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ 6. Double V Type IPMSM ์„ค๊ณ„ ๋ณ€์ˆ˜

Fig. 6. Design Variables of Double V Type IPMSM

../../Resources/kiee/KIEE.2025.74.2.266/fig6.png

ํ‘œ 1 ์„ค๊ณ„ ๋ณ€์ˆ˜ ๋ฒ”์œ„

Table 1 Range of Design Variables

์„ค๊ณ„ ๋ณ€์ˆ˜

๋ณ€์ˆ˜ ๋ฒ”์œ„

์„ค๊ณ„ ๋ณ€์ˆ˜

๋ณ€์ˆ˜ ๋ฒ”์œ„

LB

UB

LB

UB

X1 [ $mm $]

3.5

4.8

X9 [$mm $ ]

10

15

X2 [ $mm $]

3.5

4.8

X10 [ $mm $]

10

15

X3 [$deg $ ]

135

165

X11 [ $mm $]

0.2

0.8

X4 [$deg $ ]

125

145

X12 [$mm $ ]

0.2

0.8

X5 [$mm $ ]

0.5

2

X13 [ $mm $]

16

24

X6 [ $mm $]

2

6

X14 [$mm $ ]

1.5

2.5

X7 [$mm $ ]

0.6

1

X15 [$mm $ ]

0.8

1.7

X8 [ $mm $]

0.6

1

X16 [$mm $]

0.8

1.2

ํ‘œ 2 ์„ค๊ณ„ ์ œํ•œ ์กฐ๊ฑด

Table 2 Design Parameters and Constraints

์ „์•• ์ œํ•œ

[ $V _{dc}$]

์ „๋ฅ˜ ์ œํ•œ

[$A _{pk}$ ]

์ตœ๋Œ€ ๋™์ž‘์ 

[rpm]

๊ทน๋‹น ์ž์„

์‚ฌ์šฉ๋Ÿ‰[$cm ^{3}$ ]

680

424.2

15000

21.4

๊ทธ๋ฆผ 7. PSO, GA, Modified PSO-GA ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ตœ์ ํ™” ์ˆ˜ํ–‰์— ๋”ฐ๋ฅธ ํ˜•์ƒ ๋น„๊ต

Fig. 7. Comparison of shapes based on optimization performance using PSO, GA and Modified PSO-GA methods

../../Resources/kiee/KIEE.2025.74.2.266/fig7.png

๊ทธ๋ฆผ 7์—์„œ PSO, GA, Modified PSO๋ฅผ ํ†ตํ•œ ์ตœ์ ํ™” ์ˆ˜ํ–‰์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ ํ˜•์ƒ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ตœ์ ํ™” ์ˆ˜ํ–‰ ์‹œ, ํ† ํฌ ๋ฐ ํ† ํฌ ๋ฆฌํ”Œ์˜ ๋ชฉํ‘œ์น˜๋Š” ๊ฐ๊ฐ $450Nm$์ด์ƒ, $15%$์ดํ•˜๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ณต์ •ํ•œ ๋น„๊ต๋ฅผ ์œ„ํ•ด ๋ชจ๋‘ ๋™์ผํ•˜๊ฒŒ 30๊ฐœ์˜ ์ž…์ž๋ฅผ ์„ค์ •ํ•˜์˜€๋‹ค. GA ๋ฐ Modified PSO-GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ 50๋ฒˆ์˜ ๋ฐ˜๋ณต ์ด๋‚ด์— ๋ชฉํ‘œ ์„ฑ๋Šฅ์— ๋„๋‹ฌํ•œ ๋ฐ˜๋ฉด์—, PSO๋Š” ๋ชฉํ‘œ ์„ฑ๋Šฅ์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•œ ๊ฒƒ์„ ํ‘œ 3์„ ํ†ตํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” PSO ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋ณต์žกํ•œ ์ œํ•œ ์กฐ๊ฑด์ด ์กด์žฌํ•  ๊ฒฝ์šฐ, ๊ตญ์†Œ ์ตœ์ ํ•ด๋กœ ์ˆ˜๋ ดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. Modified PSO-GA Hybrid ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ 30๋ฒˆ์˜ ๋ฐ˜๋ณต ๋™์•ˆ์— ๋ชฉํ‘œ ์„ฑ๋Šฅ์— ๋„๋‹ฌํ•˜์—ฌ PSO, GA ๋ฐฉ๋ฒ•๋ณด๋‹ค 3.3์‹œ๊ฐ„ ๋” ๋น ๋ฅธ ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.

ํ‘œ 3 ์ตœ์ ํ™” ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ

Table 3 Optimization Results

PSO

GA

Modified PSO-GA

์ž…์ž ์ˆ˜

30

30

30

๋ฐ˜๋ณต ์ˆ˜

50

50

30

์†Œ์š” ์‹œ๊ฐ„ [$h$]

17.5

17.5

14.2

ํ† ํฌ [$Nm$]

424.3

451.8

452.1

ํ† ํฌ ๋ฆฌํ”Œ [%]

13.0

12.1

12.0

5. ๊ฒฐ ๋ก 

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๊ธฐ๋ฐ˜ Modified PSO-GA Hybrid ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์—ฌ Double V-Type IPMSM์˜ ํ† ํฌ ๋ฐ ํ† ํฌ ๋ฆฌํ”Œ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ PSO์™€ GA์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ์„ค๊ณ„ ์ œํ•œ ์กฐ๊ฑด์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ณ , ์ „์—ญ ํƒ์ƒ‰ ๋Šฅ๋ ฅ์„ ๊ฐ•ํ™”ํ•˜์—ฌ ๊ตญ์†Œ ์ตœ์ ํ•ด์— ๋น ์งˆ ์œ„ํ—˜์„ ์ค„์˜€๋‹ค. ๋˜ํ•œ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ์„ค๊ณ„ ์ œํ•œ ์˜์—ญ์—์„œ์˜ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ์ค„์ž„์œผ๋กœ์จ ์ตœ์ ํ™” ๊ณผ์ •์˜ ํšจ์œจ์„ฑ์„ ๋†’์˜€๋‹ค.

์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ Modified PSO-GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ PSO ๋ฐ GA์— ๋น„ํ•ด ๋น ๋ฅธ ์ˆ˜๋ ด ์†๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ํ† ํฌ ๋ฐ ํ† ํฌ ๋ฆฌํ”Œ ๊ฐœ์„  ์ธก๋ฉด์—์„œ ๊ธฐ์กด ์ตœ์ ํ™” ๋ฐฉ๋ฒ• ๋Œ€๋น„ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด Double V-Type IPMSM๊ณผ ๊ฐ™์ด ๋‹ค์–‘ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌํ•จํ•œ ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ Modified PSO-GA ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์œ ํšจ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋” ๋ณต์žกํ•œ ์„ค๊ณ„ ๋ฌธ์ œ์™€ ๋‹ค์–‘ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌํ•จํ•œ ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์žฅํ•˜๊ณ , ์ตœ์ ํ™” ์„ฑ๋Šฅ์„ ๋”์šฑ ๊ฐ•ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•˜๊ณ ์ž ํ•œ๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” 2020๋…„๋„ ์‚ฐ์—…ํ†ต์ƒ์ž์›๋ถ€ ๋ฐ ์‚ฐ์—…๊ธฐ์ˆ ํ‰๊ฐ€๊ด€๋ฆฌ์›(KIET) ์—ฐ๊ตฌ๋น„ ์ง€์›์— ์˜ํ•œ ์—ฐ๊ตฌ์ž„(โ€˜20012815โ€™)

References

1 
Y. Shimizu, S. Morimoto, M. Sanada, and Y. Inoue, โ€œInvestigation of Rotor Topologies for Reducing Torque Ripple in Double-Layer IPMSMs for Automotive Applications,โ€ in IEEE Transactions on Industrial Electronics, vol. 70, no. 8, pp. 8276-8285, Aug. 2023. DOI:10.1109/TIE.2023.3234129DOI
2 
H. -J. Cho, Y. -C. Kwon, and S. -K. Sul, โ€œTorque Ripple-Minimizing Control of IPMSM With Optimized Current Trajectory,โ€ in IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 3852-3862, July-Aug. 2021. DOI:10.1109/TIA.2021.3075424DOI
3 
C. -H. Kim, J. -W. Kim, Y. -J. Kim, and S. -Y. Jung, โ€œParticle Swarm Optimization with Multiple Regression for Optimal Design of Interior Permanent Magnet Synchronous Motor,โ€ 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1-4, 2019. DOI:10.1109/ICEMS.2019.8921993DOI
4 
C. A. C. Coello, โ€œTheoretical and Numerical Constraint-Handling Techniques used with Evolutionary Algorithms: A Survey of the state of the Art,โ€ Comput. Methods Appl. Mech. Engrg, vol. 191, pp. 1245-1287, 2002. DOI:10.1016/S0045-7825(01)00323-1.DOI
5 
Yong-jun Kwon, Dae-sun Choi, Chang-Hyeon Wang, Ho-Jin Oh, Han-Joon Yoon, Sang-Yong Jung, โ€œMulti-Objective Optimization of Torque and Torque Ripple in Double V-Type IPMSM Using a Random Forest-Based Modified GA-PSO Hybrid Method,โ€ KIEE Fall Conference, pp. 73, 2024.URL
6 
L. Breiman, โ€œRandom forests,โ€ Machine Learning, vol. 45, pp. 5โ€“32, 2001. DOI:10.1023/A:1010933404324DOI
7 
J. Kennedy, and R. Eberhart, โ€œParticle swarm optimization,โ€ Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942โ€“1948, 1995. DOI:10.1109/ICNN.1995.488968DOI
8 
Holland, J. H., โ€œGenetic algorithms,โ€ Scientific American, vol. 267, pp. 66โ€“72, 1992. DOI:10.1038/scientificamerican0792-66DOI
9 
Z. Michalewicz, and M. Schoenauer, โ€œEvolutionary algorithms for constrained parameter optimization problems,โ€ Evolutionary Computation, vol. 4, no. 1, pp. 1โ€“32, 1996. DOI:10.1162/evco.1996.4.1.1DOI

์ €์ž์†Œ๊ฐœ

๊ถŒ์šฉ์ค€(Yong-Jun Kwon)
../../Resources/kiee/KIEE.2025.74.2.266/au1.png

He received B.S degree in department of Electronic and Electrical Engineering from Sungkyunkwan University. Suwon. South Korea in 2024. He is currently pursuing a M.S. degree with the Department of Electrical and Computer Engineering at Sungkyunkwan University. Suwon. Korea. His research interests include design and numerical analysis of electric machines.

์ตœ๋Œ€์„ (Dae-Sun Choi)
../../Resources/kiee/KIEE.2025.74.2.266/au2.png

He received B.S degree in department of Electronic and Electrical Engineering from Sungkyunkwan University. Suwon. South Korea in 2024. He is currently pursuing a M.S. degree with the Department of Electrical and Computer Engineering at Sungkyunkwan University. Suwon. Korea. His research interests include design and numerical analysis of electric machines.

์™•์ฐฝํ˜„(Chang-Hyeon Wang)
../../Resources/kiee/KIEE.2025.74.2.266/au3.png

He received B.S degree in department of Electrical Engineering from Soongsil University. Seoul. South Korea in 2022. He is currently pursuing a Ph.D. degree with the Department of Electrical and Computer Engineering at Sungkyunkwan University. Suwon. Korea. His research interests include design and numerical analysis of electric machines.

์˜คํ˜ธ์ง„(Ho-Jin Oh)
../../Resources/kiee/KIEE.2025.74.2.266/au4.png

He received B.S degree in department of Electronic and Electrical Engineering from Sungkyunkwan University. Suwon. South Korea in 2021. He is currently pursuing a Ph.D. degree with the Department of Electrical and Computer Engineering at Sungkyunkwan University. Suwon. Korea. His research interests include design and numerical analysis of electric machines.

์œคํ•œ์ค€(Han-Joon Yoon)
../../Resources/kiee/KIEE.2025.74.2.266/au5.png

He received B.S degree in department of Electrical Engineering from Incheon National University. Incheon. Korea in 2019. He is currently pursuing a Ph.D. degree with the Department of Electrical and Computer Engineering at Sungkyunkwan University. Suwon. Korea. His research interests include design and numerical analysis of electric machines.

์ •์ƒ์šฉ(Sang-Yong Jung)
../../Resources/kiee/KIEE.2025.74.2.266/au6.png

He received B.S.. M.S.. and Ph.D. degrees in electrical engineering from seoul National University. Seoul. Korea. in 1997. 1999. and 2003. respectively. From 2003 to 2006, he was a Senior Research Engineer with the R&D Division, Hyundai Motor Company, Korea, From 2006 to 2011, he was an Assistant Professor with the Department of Electrical Engineering, Dong-A University, Busan, Korea, He is currently an Professor with the school of information and Communication Engineering, Sungkyunkwan university, Suwon, Korea, His research interests include the numerical analysis and optimal design of electric machines and power apparatus.