• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical Engineering, Mokpo National University, Republic of Korea.)



Power System Oscillation, Prony Analysis, RMS Energy Filter, Spring-Mass System, Barkhausen criteria, Eigenvalue

1. ์„œ ๋ก 

์ „๋ ฅ์‹œ์Šคํ…œ ๋‚ด ์ง€์†์ ์ธ ์ธ๋ฒ„ํ„ฐํ˜• ์žฌ์ƒ์—๋„ˆ์ง€์›์˜ ์ถ”๊ฐ€๋Š” ์ฃผํŒŒ์ˆ˜ ์•ˆ์ •์„ฑ ๋ฐ ์ง„๋™ ํŠน์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ ์œ ์ง€์— ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๊ฐ€ ๋œ๋‹ค[1]. ์žฌ์ƒ์—๋„ˆ์ง€์›์˜ ์ถœ๋ ฅ ๋ณ€๋™์„ฑ๊ณผ ๊ณ„ํ†ต ๊ด€์„ฑ ๊ฐ์†Œ๋กœ ์ธํ•ด ์ „๋ ฅ๊ณ„ํ†ต์—์„œ ์ €์ฃผํŒŒ ์ง„๋™ ๋ชจ๋“œ๊ฐ€ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ด€์ธก๋  ์ˆ˜ ์žˆ์–ด ์ด๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•œ ์ œ์–ด ๋ฐฉ๋ฒ•๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค[2]. ๋ฐœ์ „๊ธฐ์˜ ๋™์ ์ธ ๋™์ž‘๊ณผ ๊ณ„ํ†ต ๋‚ด ๊ณผ๋„์ ์ธ ์ „๊ธฐ์  ํ๋ฆ„์˜ ๊ฒฐํ•ฉ์€ ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ๋ณต์žก์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ, ์ด๋Š” ์‹œ์Šคํ…œ ๋‚ด์˜ ์ง„๋™ ์ฃผํŒŒ์ˆ˜ ๊ฐ์ง€ ๋ฐ ์ง„๋™ ์›์ธ ํŒŒ์•…์— ์žˆ์–ด ์–ด๋ ค์›€์„ ํ‚ค์šด๋‹ค. ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ „๊ธฐ๋Š” ์ผ์ •ํ•œ ์‹œ์Šคํ…œ ์ฃผํŒŒ์ˆ˜์— ๋™๊ธฐํ™”๋˜์–ด ์ž‘๋™ํ•˜๋Š”๋ฐ, ๋ฐœ์ „๊ธฐ์˜ ์†๋„๊ฐ€ ์ •์ƒ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜ ์ด๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์—ฌ์ž๊ธฐ ๋˜๋Š” ํ„ฐ๋นˆ์˜ ์ œ์–ด ์ปจํŠธ๋กค๋Ÿฌ ์ƒํƒœ๊ฐ€ ๋ถ€์ ์ ˆํ•˜๋‹ค๋ฉด 2.0Hz ์ดํ•˜์˜ ์ €์ฃผํŒŒ ์ง„๋™์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค[3]. ์ €์ฃผํŒŒ ์ง„๋™์ด ์ง€์†๋˜๋ฉด ๋ฒ ์–ด๋ง์ด๋‚˜ ํšŒ์ „์ถ•์˜ ๋งˆ๋ชจ, ๋ฐœ์ „๊ธฐ์˜ ํƒˆ์กฐ ๋“ฑ ๊ธฐ๊ณ„ ๋ถ€ํ’ˆ์˜ ๊ณ ์žฅ์ด๋‚˜ ํŒŒ์†์„ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ฐœ์ „๊ธฐ์˜ ์ „์••๊ณผ ์ฃผํŒŒ์ˆ˜ ๋ณ€๋™์„ ์œ ๋ฐœํ•˜์—ฌ ์ „๋ ฅ ํ’ˆ์งˆ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค[4]. ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ต๋ž€๊ณผ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ์ฃผํŒŒ์ˆ˜ ๊ฐ์‡  ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค[5-7]. ๊ฐ์‡ ๋Š” ๋‚ด๋ถ€์ ์ธ ์˜ํ–ฅ์ด๋‚˜ ์‹œ์Šคํ…œ์— ๊ฐ€ํ•ด์ง„ ์™ธ๋ž€์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ง„๋™์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ง„๋™ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ์‡ ์‹œํ‚ค๋Š” ๊ฒƒ์€ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ „๋ ฅ์‹œ์Šคํ…œ์€ ํ‚ค๋ฅดํžˆํ˜ธํ”„ ๋ฒ•์น™๊ณผ ์—๋„ˆ์ง€ ๋ณด์กด๋ฒ•์น™์„ ๋งŒ์กฑํ•˜๋Š” ์ „๊ธฐ์ ยท๊ธฐ๊ณ„์  ์‹œ์Šคํ…œ์˜ ๊ฒฐํ•ฉ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ ์ง„๋™์€ ๋น„์„ ํ˜• 2์ฐจ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ธ Spring-Mass ๋ฐฉ์ •์‹๊ณผ Barkhausen ๊ธฐ์ค€์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค[8, 9].

์ง„๋™์„ ๊ฐ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” Prony ๋ถ„์„์€ ์ž…๋ ฅ ์‹œ๊ณ„์—ด Data๋ฅผ ์ ์ ˆํ•œ ์ฐจ์ˆ˜๋ฅผ ํ™œ์šฉํ•œ ์ง€์ˆ˜ ํ•จ์ˆ˜์˜ ํ•ฉ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ฐจ์ˆ˜๋ฅผ ๋„ˆ๋ฌด ํฌ๊ฒŒ ์„ค์ •ํ•˜๋ฉด ์‹ ํ˜ธ์˜ ๋…ธ์ด์ฆˆ๊นŒ์ง€ ํฌํ•จํ•˜์—ฌ ์‹ ํ˜ธ๋ฅผ ์™œ๊ณกํ•˜๋Š” ๊ณผ์ ํ•ฉ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ณ , ๋„ˆ๋ฌด ์ž‘๊ฒŒ ์„ค์ •ํ•˜๋ฉด ์‹ค์ œ ์‹ ํ˜ธ์˜ ์ค‘์š”ํ•œ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์ด ๋ˆ„๋ฝ๋˜์–ด ์ค‘์š” ํŠน์„ฑ์„ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์–ด ์ ์ ˆํ•œ ์ฐจ์ˆ˜๋ฅผ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค[3]. RMS Energy Filtering์€ ํŠน์ • ์ง„๋™ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฒ€์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋‚˜ ํŠน์ • ์ฃผํŒŒ์ˆ˜์˜ ํฌ๊ธฐ๋งŒ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ Prony ๋ถ„์„์ฒ˜๋Ÿผ ๊ฐ์‡ ๊ณ„์ˆ˜, Damping๊ณผ ๊ฐ™์€ ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š๋Š”๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ์˜ ์ง„๋™์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ํƒ€๋ถ„์•ผ์—์„œ ์ •๋ฆฝ๋œ ์ง„๋™์ด๋ก ์„ ๊ณต๋ถ€ํ•˜์˜€๊ณ  ์ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ์˜ ์ง„๋™์„ ๊ฐ์ง€ํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•์„ ์„ ์ •ํ•˜์˜€๋‹ค. ๋ฐœ์ „๊ธฐ ํ•œ ๋Œ€์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” Spring-Mass System์€ ๋‹ค์ˆ˜์˜ ๋ฐœ์ „๊ธฐ๊ฐ€ ์—ฐ๊ฒฐ๋œ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ์˜ ์ง„๋™ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ RF ํšŒ๋กœ์—์„œ์˜ Barkhausen ๊ธฐ์ค€์€ ์ „๊ธฐ์‹œ์Šคํ…œ์˜ ์ง„๋™์œ ์ง€์กฐ๊ฑด์„ ๋ช…ํ™•ํžˆ ์ดํ•ดํ•  ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ๋™์ ์‹œ์Šคํ…œ์—์„œ์˜ ๊ฐ์‡ ์ •๋„๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ค์›Œ ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ์ „์•• Data๋ฅผ ์‚ฌ์šฉํ•œ Prony ๋ถ„์„์„ ํ†ตํ•ด ์ง„๋™์„ ํŒ๋‹จํ•œ๋‹ค. ์‹ค์ œ ๋ฏธ๊ตญ์—์„œ ์ง„๋™์ด ๋ฐœ์ƒํ•œ ์ „์•• ์‹คํšจ์น˜ Data๋ฅผ ํ™œ์šฉํ•˜์—ฌ RMS Energy Filtering์„ Prony ๋ถ„์„๊ณผ ์—ฐ๊ณ„ํ•˜์—ฌ ์ ์ ˆํ•œ ์ฐจ์ˆ˜๋ฅผ ์„ ํƒํ•˜๊ณ  eigenvalue์™€ Damping ratio๋ฅผ ํ†ตํ•ด ์ง„๋™์„ ํŒ๋‹จํ•œ๋‹ค.

2. ์‹œ์Šคํ…œ ๋ณ„ ์ง„๋™์ด๋ก  ๋ฐ Prony ๋ถ„์„

2.1 Spring-Mass System

Spring-Mass System์€ ๊ธฐ๊ณ„์‹œ์Šคํ…œ์—์„œ ๋ฌผ๋ฆฌ์ ์ธ ์งˆ๋Ÿ‰๊ณผ ์Šคํ”„๋ง ์ƒ์ˆ˜, ๊ฐ์‡ ์— ์˜ํ•œ ์—๋„ˆ์ง€ ์†์‹ค์„ ๊ณ ๋ คํ•˜์—ฌ 2์ฐจ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํ˜•ํƒœ๋กœ ์ง„๋™์„ ๋ถ„์„ํ•˜๋Š” ๋ชจ๋ธ์ด๋‹ค. ์ „๋ ฅ์‹œ์Šคํ…œ์€ ๋‹จ์ˆœํžˆ ๊ธฐ๊ณ„์ ์ธ ์š”์†Œ๋งŒ์ด ์•„๋‹Œ ์ „๊ธฐ์ ยท์—ญํ•™์ ยท์ œ์–ด์  ์ƒํ˜ธ์ž‘์šฉ์ด ๋™์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ๋น„์„ ํ˜• ๋™์  ์‹œ์Šคํ…œ์ด๋‹ค. ์ „๋ ฅ๊ณ„ํ†ต์—์„œ๋Š” ๋ฐœ์ „๊ธฐ, ๋ณ€์••๊ธฐ, ์†ก์ „์„ ๋กœ, ๋ถ€ํ•˜ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์„ค๋น„๋“ค์ด ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์œผ๋ฉฐ ๋ฐœ์ „๊ธฐ์˜ ์—ฌ์ž์ œ์–ด, ํ„ฐ๋นˆ์กฐ์†๊ธฐ ์ œ์–ด ๋“ฑ ๊ฐ ์„ค๋น„์˜ ์ œ์–ด์‹œ์Šคํ…œ์— ์˜ํ•ด์„œ๋„ ์ง„๋™ ํŠน์„ฑ์ด ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง„๋‹ค. ๊ธฐ๊ณ„์‹œ์Šคํ…œ์—์„œ ๊ฐ์‡ (damping)๋Š” ๋ฌผ๋ฆฌ์  ๋งˆ์ฐฐ, ์žฌ๋ฃŒ ํŠน์„ฑ ๋“ฑ์œผ๋กœ ๊ฒฐ์ •๋˜์ง€๋งŒ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ๋Š” ๋ฐœ์ „๊ธฐ์˜ ์ „์••ยท์ฃผํŒŒ์ˆ˜ ๋ณ€๋™, ๋ถ€ํ•˜ ํŠน์„ฑ, ์ „์ž๊ธฐ์ ์ธ ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ ๋“ฑ์— ์˜ํ•ด ๊ฐ์‡  ํŠน์„ฑ์ด ๋‹ฌ๋ผ์ง„๋‹ค. ๋ฐœ์ „๊ธฐ ๋‚ด๋ถ€์˜ ๊ฐ์† ํ† ํฌ, ์—ฌ์ž๊ธฐ์˜ ์ œ์–ด๊ธฐ, ๊ณ„ํ†ต์šด์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์ „์›๊ณผ ๋ถ€ํ•˜์˜ ๋ณ€๋™ ๋“ฑ์ด ์ง„๋™ ๋ชจ๋“œ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์˜ˆ์— ํ•ด๋‹นํ•œ๋‹ค.

๊ฐ์‡ ๋น„$\zeta_{m}$๋Š” ์‹œ์Šคํ…œ์ด ์™ธ๋ž€์„ ๋ฐ›์€ ํ›„ ์ง„๋™์ด ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ ๊ฐ์‡ ํ•˜๋Š”์ง€์˜ ์ธก์ •์น˜๋กœ 2์ฐจ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์ฃผํŒŒ์ˆ˜ ์‘๋‹ต์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. $c$๋Š” ์‹ค์ œ ๊ฐ์‡ (Actual Damping), $c_{c}$๋Š” ์ž„๊ณ„๊ฐ์‡ (Critical Damping)์ด๋‹ค.

(1)
$\zeta_{m}=\dfrac{c}{c_{c}}$

์‹œ์Šคํ…œ์˜ ํŠน์„ฑ๋ฐฉ์ •์‹์€ ์‹ (2)์™€ ๊ฐ™๋‹ค. $m$์€ ์งˆ๋Ÿ‰, $k$๋Š” ์Šคํ”„๋ง ์ƒ์ˆ˜์ด๋‹ค.

(2)
$m\dfrac{d^{2}x}{dt^{2}}+c\dfrac{dx}{dt}+kx =0$

์ž„๊ณ„๊ฐ์‡  $c_{c}$๋Š” ์‹ (3)๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ $w_{n}$์€ ์‹œ์Šคํ…œ์˜ ๊ณ ์œ  ์ฃผํŒŒ์ˆ˜์ด๋‹ค.

(3)
$c_{c}=2\sqrt{mk}= 2mw_{n},\: w_{n}=\sqrt{\dfrac{k}{m}}$
๊ฐ์‡ ๋น„$\zeta_{m}$๋Š” ์‹ (4)์™€ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.
(4)
$\zeta_{m}=\dfrac{c}{2\sqrt{mk}}$

๊ฐ์‡ ๋น„$\zeta_{m}$์™€ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜$w_{n}$๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹ (2)๋ฅผ ์น˜ํ™˜ํ•˜์—ฌ ์‹ (5)์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•œ๋‹ค.

(5)
$\dfrac{d^{2}x}{dt^{2}}+ 2\zeta_{m}w_{n}\dfrac{dx}{dt}+w_{n}^{2}x=0$

์‹ (2)์˜ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํ•ด๋Š” ๋‹ค์Œ ์‹ (6)๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋˜๋ฉฐ, $C_{s}$๋Š” ์ดˆ๊ธฐ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๊ฒฐ์ •๋˜๋Š” ์ƒ์ˆ˜, $s_{s}$๋Š” ์‹œ์Šคํ…œ์˜ eigenvalue์ด๋‹ค. $s_{s}$๋Š” ์‹ (7)๊ณผ ๊ฐ™์ด ์ฃผ์–ด์ง„๋‹ค.

(6)
$X(t)=C_{s}e^{s_{s}t}$
(7)
$s^{s}=-w_{n}(\zeta_{m}\pm \sqrt{1-\zeta_{m}^{2}})$

๊ฐ์‡ ๋น„$\zeta_{m}$์˜ ๋ฒ”์œ„์— ๋”ฐ๋ฅธ ์ง„๋™ ์ƒํƒœ๋Š” ํ‘œ 1๊ณผ ๊ฐ™๋‹ค. ๊ณผ๊ฐ์‡  ์ƒํƒœ๋Š” ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์ง„๋™์ด ๊ฐ์‡ ํ•˜๋ฉฐ 0์— ๊ทผ์ ‘ํ•˜๊ณ  ๋ถ€์กฑ๊ฐ์‡  ์ƒํƒœ์—๋Š” ์ง„๋™ํ•˜๋ฉฐ ๊ฐ์‡ ํ•œ๋‹ค. ์ž„๊ณ„๊ฐ์‡  ์ƒํƒœ์—๋Š” ๊ณผ๊ฐ์‡ ์™€ ๋ถ€์กฑ๊ฐ์‡  ์‚ฌ์ด์˜ ๊ฒฝ๊ณ„๋กœ ๊ฐ€์žฅ ์งง์€ ๊ณผ๋„์‘๋‹ต ํŠน์„ฑ์„ ์ง€๋‹Œ๋‹ค.

ํ‘œ 1 ๊ฐ์‡ ๋น„์— ๋”ฐ๋ฅธ ์ง„๋™ ์ƒํƒœ

Table 1 Oscillation States According to Damping ratio

Damping Ratio($\zeta_{m}$ )

State

0 <$\zeta_{m}$ > 1

๋ถ€์กฑ๊ฐ์‡ (Underdamped)

$\zeta_{m}$ = 1

์ž„๊ณ„๊ฐ์‡ (Critical Damped)

$\zeta_{m}$ > 1

๊ณผ๊ฐ์‡ (Overdamped)

$\zeta_{m}$ = 0

๋น„๊ฐ์‡ (Undamped)

Spring-Mass System์€ ์งˆ๋Ÿ‰, ์Šคํ”„๋ง, ๊ฐ์‡  ์š”์†Œ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์‹ (5)์™€ ๊ฐ™์ด ๋ชจ๋ธ๋งํ•˜์—ฌ ๊ณ ์œ ์ง„๋™์ˆ˜$w_{n}$์™€ ๊ฐ์‡ ๋น„$\zeta_{m}$๋ฅผ ํ†ตํ•ด ์ง„๋™ ํŠน์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ๋„ ๊ธฐ๊ณ„์ ์ธ ๊ฐ์‡  ์š”์ธ์€ ์กด์žฌํ•˜์ง€๋งŒ ๋‹ค์ˆ˜์˜ ๋ฐœ์ „๊ธฐยท๋ถ€ํ•˜ ๋“ฑ์˜ ๋ณตํ•ฉ์ ์ธ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ณต์žกํ•œ ๊ตฌ์กฐ์ด๋ฏ€๋กœ $\zeta_{m}$์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์—†์–ด ์ง„๋™๊ฐ์ง€์— ํ™œ์šฉํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. Spring-Mass System์€ ๊ธฐ์ดˆ ์ง„๋™์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํŒŒ์•…ํ•˜๊ณ  ๊ฐ์‡  ํŠน์„ฑ์˜ ์ค‘์š”์„ฑ์„ ์„ค๋ช…ํ•  ์ˆ˜๋Š” ์žˆ์œผ๋‚˜ ์ „๋ ฅ ์‹œ์Šคํ…œ์˜ ์ง„๋™์„ ๊ฐ์ง€ํ•˜๋Š” ๋ชฉ์ ์— ์žˆ์–ด ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

2.2 Radio Frequency Oscillation

RF Oscillator๋Š” ์‹ ํ˜ธ ์ƒ์„ฑ ๋ฐ ์ฃผํŒŒ์ˆ˜ ๋ณ€ํ™˜์„ ์œ„ํ•œ ๋น„์„ ํ˜• ํšŒ๋กœ๋กœ ์ „์••์ด๋“$A$๋ฅผ ๊ฐ€์ง„ ์ฆํญ๊ธฐ์™€ ์ฃผํŒŒ์ˆ˜ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ์ „๋‹ฌ ํ•จ์ˆ˜ $H(w)$๋ฅผ ๊ฐ€์ง„ ํ”ผ๋“œ๋ฐฑ ๋„คํŠธ์›Œํฌ์˜ ๊ฒฐํ•ฉ์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ์ถœ๋ ฅ ์ „์••$V_{o}(w)$๋Š” ๋‹ค์Œ ์‹ (8)๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(8)
$V_{o}(w)=AV_{i}(w)+H(w)AV_{o}(w)$

์‹ (9)๋Š” ์ถœ๋ ฅ ์ „์••$V_{o}(w)$๋ฅผ ์ž…๋ ฅ ์ „์••$V_{i}(w)$ํ•จ์ˆ˜๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(9)
$V_{o}(w)=(\dfrac{A}{1-AH(w)})V_{i}(w)$

์‹ (9)์—์„œ $1-AH(w)$๊ฐ€ 0์ด ๋˜๋ฉด, ํšŒ๋กœ๋Š” ์™ธ๋ถ€์—์„œ์˜ ์ž…๋ ฅ ์ „์••$V_{i}(w)$์ด 0์— ๊ทผ์ ‘ํ•˜๋”๋ผ๋„ ํšŒ๋กœ ๋‚ด๋ถ€์—์„œ ์‹ ํ˜ธ๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ˆœํ™˜ํ•˜๋ฉฐ ์ฆํญ๋œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด Oscillator๋Š” ์ง€์†์ ์ธ ์ถœ๋ ฅ ์ „์•• $V_{o}(w)$์„ ์ƒ์„ฑํ•œ๋‹ค. ๊ทธ๋ฆผ 1์€ ์ •ํ˜„ํŒŒ Oscillator์˜ ํ”ผ๋“œ๋ฐฑ ํšŒ๋กœ ๋ธ”๋ก ๋‹ค์ด์–ด๊ทธ๋žจ์ด๋‹ค.

๊ทธ๋ฆผ 1. ์ •ํ˜„ํŒŒ Oscillator ํ”ผ๋“œ๋ฐฑ ํšŒ๋กœ ๋ธ”๋ก ๋‹ค์ด์–ด๊ทธ๋žจ

Fig. 1. Block diagram of a sinusoidal oscillator feedback circuit

../../Resources/kiee/KIEE.2025.74.3.377/fig1.png

Barkhausen ๊ธฐ์ค€์€ ์ง„๋™ ์ƒ์„ฑ์— ๋Œ€ํ•œ ์œ„์ƒ์กฐ๊ฑด๊ณผ ์ด๋“์กฐ๊ฑด์„ ํ†ตํ•ด ์ „๊ธฐํšŒ๋กœ์—์„œ ํŠน์ • ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ฆํญํ•˜๊ณ  ์œ ์ง€๋˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค๋ช…ํ•œ๋‹ค. Oscillator ํšŒ๋กœ ๋‚ด์—์„œ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆœํ™˜๋˜์–ด ์ƒ์„ฑ๋œ ์ง„๋™ ์‹ ํ˜ธ๋Š” ์ฒ˜์Œ ์‹ ํ˜ธ์˜ ์œ„์ƒ๊ณผ ๋™์ผํ•ด์•ผ ํ•˜๋ฉฐ, ์œ„์ƒ์ด ์ผ์น˜ํ•˜์ง€ ์•Š์œผ๋ฉด, ์‹ ํ˜ธ๊ฐ€ ๋ถˆ๊ทœ์น™์ ์œผ๋กœ ๋ณ€ํ•˜๊ฑฐ๋‚˜ ์†Œ๋ฉธํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์งˆ์ ์œผ๋กœ๋Š” ํฐ $A$๋ฅผ ๊ฐ€์ง€๋ฉด์„œ $H(w)$์˜ ์œ„์ƒ์ด ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ผ ๊ธ‰๊ฒฉํžˆ ๋ฐ”๋€Œ๋Š” Resonance ํ˜„์ƒ์ด ์žˆ์„ ๋•Œ ์ง„๋™์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ถฉ๋ถ„ํžˆ ํฐ $A$๊ฐ’์€ ์‹œ์Šคํ…œ์—์„œ์˜ ์†์‹ค์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, Resonance๋Š” ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ผ์น˜ํ•  ํ™•๋ฅ ์„ ๋†’์ธ๋‹ค. ์ด๋Ÿฌํ•œ Barkhausen ๊ธฐ์ค€์€ ์ง„๋™์„ ํšŒํ”ผํ•˜๋Š” ์•„์ด๋””์–ด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ๋‹ค์ˆ˜์˜ ๋น„์„ ํ˜• ์š”์†Œ ๋ฐ ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌํ•จํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ๋™์  ์‹œ์Šคํ…œ์ธ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ์˜ ์ง„๋™ ๊ฐ์ง€์— ์ ์šฉํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์‹ค์ œ ๋Œ€๊ทœ๋ชจ ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ๋ฐœ์ „๊ธฐ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ, ๋ถ€ํ•˜ ํŠน์„ฑ ๋“ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋Š” Prony ๋ถ„์„๊ณผ ๊ฐ™์€ ์‹ค์ธก ๊ธฐ๋ฐ˜ ๋ถ„์„๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

2.3 Prony Analysis Algorithm

Prony ๋ถ„์„์€ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ฐ ์‹œ์Šคํ…œ ์‹๋ณ„์— ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” ์ˆ˜ํ•™์  ๊ธฐ๋ฒ•์œผ๋กœ, ์ž…๋ ฅ๋˜๋Š” ์‹œ๊ฐ„ ๋„๋ฉ”์ธ์˜ Data๋ฅผ ์ฐจ์ˆ˜$M$์„ ์‚ฌ์šฉํ•œ ํ–‰๋ ฌ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ์—ฌ๋Ÿฌ ๋ณต์†Œ ๋ชจ๋“œ์˜ ๊ฐ์‡  ํ˜น์€ ๋ฐœ์‚ฐํ•˜๋Š” ์ง€์ˆ˜ ํ•จ์ˆ˜์˜ ํ•ฉ์œผ๋กœ ๋ถ„ํ•ดํ•œ๋‹ค. ๋‹ค์ˆ˜์˜ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์ด ํ˜ผ์žฌ๋œ ์‹ ํ˜ธ์—์„œ ๊ฐ ๋ชจ๋“œ๋ฅผ ๊ตฌ๋ถ„ํ•˜์—ฌ ์ง„๋™๋ชจ๋“œ์˜ ๊ฐ์‡ ์™€ ๋น„๊ฐ์‡  ๋ชจ๋“œ๋ฅผ ๋ถ„๋ฆฌํ•˜๊ณ  ๊ฐ๊ฐ์˜ ๋ชจ๋“œ์— ๋Œ€ํ•œ ์ง„ํญ, ์ฃผํŒŒ์ˆ˜, ๊ฐ์‡ ๋น„๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๊ธฐ์กด์˜ FFT(Fast Fourier Transform)์— ๋น„ํ•ด ์„ธ๋ฐ€ํ•œ ์ฃผํŒŒ์ˆ˜ ๋ถ„ํ•ด๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ž‘์€ ์‹ ํ˜ธ์˜ ๋ณ€ํ™”๋ฅผ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ž…๋ ฅ Data์— ํฌํ•จ๋œ ๋…ธ์ด์ฆˆ ์‹ ํ˜ธ์— ๋ฏผ๊ฐํ•˜๋‹ค. Prony ๋ถ„์„์— ์žˆ์–ด ์ฐจ์ˆ˜$M$์˜ ์„ค์ •์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ’์ด ๋‹ฌ๋ผ์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ ์ ˆํ•œ ์ฐจ์ˆ˜๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋ฉฐ RMS Energy Filtering์„ ํ†ตํ•ด ์ฐจ์ˆ˜๋ฅผ ์„ ํƒํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ Prony ๋ถ„์„ ์ด์ „์— RMS Energy Filtering์œผ๋กœ ์ฃผ์š” ์ง„๋™ ์ฃผํŒŒ์ˆ˜๋Œ€์—ญ์„ ์„ ๋ณ„ํ•˜๊ณ , Prony๋ถ„์„๊ณผ ์—ฐ๊ณ„ํ•˜์—ฌ ๊ฐ์‡ ๊ณ„์ˆ˜ ๋ฐ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฐ์ถœํ•จ์œผ๋กœ์จ ๊ณผ์ ํ•ฉ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํŠน์ • ์ฃผํŒŒ์ˆ˜๋Œ€์—ญ์— ๋Œ€ํ•œ RMS Energy Filtering์„ ์šฐ์„ ์ ์œผ๋กœ ์ ์šฉํ•˜์—ฌ Prony ๋ถ„์„์˜ ์ฐจ์ˆ˜ ์„ค์ • ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ณผ๋„ยท๊ณผ์†Œ ๋ฌธ์ œ ๋ณด์ •์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋˜ํ•œ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ์ž๊ธฐ์ƒ๊ด€ ํ•จ์ˆ˜๋ฅผ ํ–‰๋ ฌ๋กœ ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ๋…ธ์ด์ฆˆ๋ฅผ ์ค„์ด๊ณ  ์ฃผ์š” ์ง„๋™๋ชจ๋“œ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹ค์ œ ๊ณ„ํ†ต ์‚ฌ๋ก€๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 2๋Š” ์ œ์•ˆํ•˜๋Š” RMS Energy Filter์™€ Prony ๋ถ„์„์„ ๊ฒฐํ•ฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค[10].

๊ทธ๋ฆผ 2. Prony ๋ถ„์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜

Fig. 2. Prony Analysis Algorithms

../../Resources/kiee/KIEE.2025.74.3.377/fig2.png

2.3.1 RMS Energy Filtering

DFT(Discrete Fourier Transform)์€ ์ž…๋ ฅ ์‹ ํ˜ธ๋ฅผ ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋ฉฐ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(10)
$X(k)=\sum_{n=0}^{N-1}x(n)e^{-\dfrac{2\pi i}{N}kn}(k=0,\: ...,\: N-1)$

RMS Energy Filtering๋ฅผ ์ ์šฉํ•˜์—ฌ ์‹ ํ˜ธ์˜ ๋ ˆ๋ฒจ์„ ์ธก์ •ํ•˜์—ฌ ์ง„๋™ ์ฃผํŒŒ์ˆ˜๋ฅผ ํŠน์ •ํ•œ๋‹ค. BPF(Band Pass Filter)์˜ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ๋ณ„ ์‚ฌ์šฉ ๋ชฉ์ ์€ ํ‘œ 2์™€ ๊ฐ™๋‹ค[11].

ํ‘œ 2 BPF ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ๋ณ„ ์‚ฌ์šฉ๋ชฉ์ 

Table 2 BPF Frequency Range and Usage Purposes

์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ

์‚ฌ์šฉ๋ชฉ์ 

0.01-0.15

์กฐ์†๊ธฐ ์ œ์–ด

0.15-1

์ „๊ธฐ๊ธฐ๊ธฐ ๊ฒฐํ•ฉ์œผ๋กœ ์ธํ•œ ์ง€์—ญ์ ์ธ ์ง„๋™ ํŒŒ์•…

1.0-2.0

๋ฐœ์ „๊ธฐ์˜ ์—ฌ์ž ์ œ์–ด

2.0-15

๋™๊ธฐ๊ธฐ ํšŒ์ „์ถ• Torsional ๋ชจ๋“œ ๋ถ„์„

2.3.2 Prony Analysis

์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ ๋ถ€ํ•˜, ์ „์•• ์ธก์ •๊ฐ’ ๋“ฑ์˜ Data๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์—ฐ์†์ ์œผ๋กœ ์ˆ˜์ง‘๋˜๋ฉฐ Prony์˜ ํšŒ๊ท€๋ชจ๋ธ์—์„œ ๋ฐ์ดํ„ฐ ์ƒ๊ด€์„ฑ์„ ๋ถ„์„ํ•˜์—ฌ ์ด์ƒ์ƒํƒœ๋ฅผ ๊ฐ์ง€ํ•œ๋‹ค[12]. ๊ธฐ์กด Prony ๋ถ„์„๋ฐฉ๋ฒ•์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์„ ํƒ๋œ ์ฐจ์ˆ˜์— ๋”ฐ๋ผ ์ผ๋ถ€ ๊ตฌ๊ฐ„์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฒ„๋ ค์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „์ฒด ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ž๊ธฐ์ƒ๊ด€ ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๋ˆ„๋ฝ์—†์ด ์ „ ๊ตฌ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ฅด๊ฒŒ ๋ฐ˜์˜ํ•˜์—ฌ ์•ˆ์ •์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ๋…ธ์ด์ฆˆ๋ฅผ ์ค„์ธ๋‹ค.

์ž๊ธฐ์ƒ๊ด€ ํ•จ์ˆ˜$r(m)$์€ ์‹ ํ˜ธ์˜ ์‹œ๊ฐ„ ์ง€์—ฐ์— ๋”ฐ๋ฅธ ์ƒ๊ด€์„ฑ์„ ์ธก์ •ํ•˜๋Š” ํ•จ์ˆ˜๋กœ, ์‹ ํ˜ธ์˜ ํ˜„์žฌ ๊ฐ’ $x(n)$๊ณผ $m$๋งŒํผ์˜ ์‹œ๊ฐ„ ์ง€์—ฐ ๊ฐ’ $x(n+m)$์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์‹ ํ˜ธ $x(n)$์˜ ์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜ $r(m)$์€ ์‹ (11)์œผ๋กœ ์ •์˜๋œ๋‹ค.

(11)
$r(m)=\sum_{n=0}^{N-m-1}x(n)x(n+m)$

์‹ ํ˜ธ $x(n)$์— ๋Œ€ํ•œ ๋ณต์†Œ ์ง€์ˆ˜ ํ•จ์ˆ˜ ๋ชจ๋ธ๋ง์€ ์‹ (12)๋กœ ํ‘œํ˜„๋˜๋ฉฐ eigenvalue $z_{k}$($\lambda_{k}$)๊ตฌ์„ฑ์š”์†Œ์ธ ๊ฐ์‡ ๊ณ„์ˆ˜ $a_{k}$์™€ ๊ฐ์ฃผํŒŒ์ˆ˜ $b_{k}$๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ง„๋™ ํŠน์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ $\triangle t$๋Š” ์ƒ˜ํ”Œ๋ง ํƒ€์ž„์„ ์˜๋ฏธํ•˜๋ฉฐ ๊ฐ ๋ชจ๋“œ์˜ ์ฃผํŒŒ์ˆ˜๋Š” ๊ฐ์‡ ($a_{k}$<0) ํ˜น์€ ๋ฐœ์‚ฐ($a_{k}$>0)ํ•œ๋‹ค.

(12)
$x[n]=\sum_{k=1}^{M}A_{k}e^{z_{k}n\triangle t},\: z_{k}=a_{k}+jb_{k}$

Prony์—์„œ ์‚ฌ์šฉ๋˜๋Š” Hankel ํ–‰๋ ฌ $H$๋Š” ๋ฐ˜๋Œ€๊ฐ์„ ๊ณผ ํ‰ํ–‰ํ•œ ๋Œ€๊ฐ์„ ์„ ๋”ฐ๋ผ ๊ฐ’์ด ์ผ์ •ํ•œ ์ •์‚ฌ๊ฐํ–‰๋ ฌ์ด๋ฉฐ ์‹ (13)๊ณผ ๊ฐ™๋‹ค. ์‹ (14)์€ Hankel ํ–‰๋ ฌ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ ํ˜ธ์˜ ์„ ํ˜• ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์„ ํ˜• ๋ฐฉ์ •์‹์ด๋‹ค.

(13)
$H=\begin{pmatrix}r(0)&r(1)&r(2)&\cdots &r(M-1)\\r(1)&r(2)&r(3)&\cdots &r(M)\\\vdots &\vdots &\vdots &\cdots &\vdots \\r(M-1)&r(M)&r(M+1)&\cdots &r(2M-2)\end{pmatrix}$
(14)
$Hc=-d$

$c$๋Š” ์„ ํ˜•์˜ˆ์ธก ๊ณ„์ˆ˜๋ฒกํ„ฐ์ด๊ณ  $d$๋Š” ์ž๊ธฐ์ƒ๊ด€ ํ•จ์ˆ˜๋ฒกํ„ฐ๋กœ ์‹ (15)๊ณผ ๊ฐ™๋‹ค.

(15)
$c=\begin{pmatrix}c_{1}\\c_{2}\\\vdots \\c_{M}\end{pmatrix}$ , $d=\begin{pmatrix}r(M)\\r(M+1)\\\vdots \\r(2M-1)\end{pmatrix}$

$H^{T}$๋Š” ํ–‰๋ ฌ$H$์˜ ์ „์น˜ํ–‰๋ ฌ์ด๋ฉฐ ์ตœ์†Œ์ž์Šน๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ž”์ฐจ ์ œ๊ณฑํ•ฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” $c$๋ฅผ ์ถ”์ •ํ•œ๋‹ค.

(16)
$c=(H^{T}H)^{-1}H^{T}d$

์„ ํ˜•์˜ˆ์ธก ๊ณ„์ˆ˜$c_{k}$๋ฅผ ์‚ฌ์šฉํ•œ ํŠน์„ฑ๋ฐฉ์ •์‹ ์‹ (17)๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  $z_{k}$๋ฅผ ๋„์ถœํ•œ๋‹ค.

(17)
$P(z)=1-c_{1}z^{-1}-c_{2}z^{-2}-\cdots -c_{M}z^{-M}$

$z_{k}$์„ ์ด์šฉํ•ด ๊ฐ ๋ชจ๋“œ์˜ ์ฃผํŒŒ์ˆ˜์™€ ๊ฐ์‡ ๋น„๋ฅผ ์‹ (18), ์‹ (19)์™€ ๊ฐ™์ด ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. $\zeta_{p}$๋ฅผ ํ†ตํ•ด ํ•ด๋‹น ๋ชจ๋“œ๊ฐ€ ์ฃผํŒŒ์ˆ˜ ์ง„๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒ๋‹จํ•œ๋‹ค.

(18)
$f_{k}=\dfrac{b_{k}}{2\pi\triangle t}$
(19)
$\zeta_{p}=\dfrac{\ln | z |}{\triangle t}$

Hankel ํ–‰๋ ฌ $H$๋Š” ์‹ (20)๊ณผ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ์ธ์ˆ˜๋ถ„ํ•ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํ–‰๋ ฌ $D$๋Š” $A_{1,\: \ldots ,\: }A_{k}$๊ฐ’์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋Œ€๊ฐํ–‰๋ ฌ์ด๋ฉฐ, $V^{T}$๋Š” $V$์˜ ์ „์น˜ํ–‰๋ ฌ์ด๋‹ค.

(20)

$H =(r(l+m))_{l,\: m=0}^{M-1}=(\sum_{k=1}^{M}A_{k}e^{z_{k}(l+m)})_{l,\: m=0}^{M-1}$

$=(\sum_{k=1}^{M}A_{k}e^{z_{k}l}e^{z_{k}m})_{l,\: m=0}^{M-1}=(A_{k}e^{z_{k}l})_{l=0,\: k=1}^{M-1,\: M}\times(e^{z_{k}m})_{m=0,\: k=1}^{M-1,\: M}$

$=(e^{z_{k}l})_{l=0,\: k=1}^{M-1,\: M}\times(e^{z_{k}m})_{m=0,\: k=1}^{M,\: M-1}\times D$

$=V(e^{z_{1}},\: e^{z_{2}},\: \ldots ,\: e^{z_{M}})\times V^{T}(z_{1},\: e^{z_{2}},\: \ldots ,\: e^{z_{M}})\times D$

$A_{k}$๋Š” ์ž…๋ ฅ์‹ ํ˜ธ๊ฐ€ $x(0),\: x(1),\: \cdots ,\: x(M-1)$ ์ผ ๋•Œ, ์‹ (21)๊ณผ ๊ฐ™๋‹ค. ์‹ (22)์€ ์ดˆ๊ธฐ ์‹ ํ˜ธ ๋ฒกํ„ฐ $X$, Vandermonde ํ–‰๋ ฌ$V$์ด๋‹ค.

(21)
$A_{k}=V^{-1}X$
(22)
$X=\begin{pmatrix}x(0)\\x(1)\\x(2)\\\vdots \\x(M-1)\end{pmatrix}$ , $V=\begin{bmatrix}1&1&1&\cdots &1\\z_{1}&z_{2}&z_{3}&\cdots &z_{M}\\z_{1}^{2}&z_{2}^{2}&z_{3}^{2}&\cdots &z_{M}^{2}\\\vdots &\vdots &\vdots &\ddot{}&\vdots \\z_{1}^{M-1}&z_{2}^{M-1}&z_{3}^{M-1}&\cdots &z_{M}^{M-1}\end{bmatrix}$

ํ•ด๋‹น ๋ถ„์„๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ์˜ ์ƒ๊ด€์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ Prony ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ ์‹ ํ˜ธ์˜ ์„ ํ˜• ์˜ˆ์ธก์„ ํ†ตํ•ด ์ „๋ ฅ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์ง„๋™ ๋ชจ๋“œ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ํ•ด๋‹น ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ๋ณต์žกํ•œ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ ๊ฐ ๋ชจ๋“œ์˜ ๊ฐ์‡ ๊ณ„์ˆ˜$a_{k}$์™€ ๊ฐ์‡ ๋น„$\zeta_{p}$๋ฅผ ํ†ตํ•ด ๋ฐœ์‚ฐํ•˜๋Š” ๋ถˆ์•ˆ์ • ๋ชจ๋“œ์™€ ์•ˆ์ •์ ์ธ ๊ฐ์‡  ๋ชจ๋“œ๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค.

3. ์‹ค์ œ ์ง„๋™ ์‚ฌ๋ก€ Prony ๋ถ„์„

์•ž์„œ ์ •๋ฆฌ๋œ ์ง„๋™์ด๋ก  ์ค‘ ์ „๋ ฅ์‹œ์Šคํ…œ์—์„œ์˜ ์ง„๋™๋ถ„์„์„ ์‹ ํ˜ธ์‹œ์Šคํ…œ์—์„œ ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” Prony ๋ถ„์„๋ฐฉ๋ฒ•์œผ๋กœ ๋‘ ๊ฐ€์ง€ Case์˜ ์‚ฌ๋ก€ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค[13]. ๊ถŒ์žฅ PMU(Phasor Measurement Unit)์ƒ˜ํ”Œ๋ง ์†๋„ $\triangle t$๋Š” โ€˜IEEE ์ „๋ ฅ์‹œ์Šคํ…œ์„ ์œ„ํ•œ Synchrophasor Data ์ „์†ก ํ‘œ์ค€โ€™์— ์˜ํ•ด 10-60fps์ด๋ฉฐ ๋ณธ ์—ฐ๊ตฌ์—์„œ ํ™œ์šฉ๋œ Data์˜ ์ƒ˜ํ”Œ๋ง ์†๋„๋Š” 30fps์ด๋‹ค[14].

3.1 Case Analysis 1 : 0.08Hz, 0.31Hz

์‚ฌ๋ก€ 1์€ 2017๋…„ 8์›” 3์ผ, ISO New England ์ „๋ ฅ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•œ ์ง„๋™์œผ๋กœ ๋ฐœ์ „๊ธฐ์˜ ์กฐ์†๊ธฐ์— ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด์„œ ์ง„๋™์ด ์‹œ์ž‘๋˜์—ˆ๋‹ค. ๋ฐœ์ „ ์ถœ๋ ฅ์„ ์กฐ์ ˆํ•˜๋Š” ๊ณผ์ •์—์„œ ์•ฝ 130MW ๊ทœ๋ชจ์˜ ์ง„๋™์ด ์—ฌ๋Ÿฌ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ ํŠนํžˆ 0.08Hz์™€ 0.31Hz์˜ ์ฃผ์š” ๋ชจ๋“œ๊ฐ€ ์‹๋ณ„๋œ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค[13]. ๊ทธ๋ฆผ 3์€ ์‚ฌ๋ก€ 1์˜ ๊ฐ segment๊ฐ€ ์ ์šฉ๋œ ์ „์•• Data ๊ทธ๋ž˜ํ”„์ด๋‹ค. ๊ทธ๋ฆผ 4๋Š” ์ €์ฃผํŒŒ ๋Œ€์—ญ 0.01-0.15Hz, 0.15-1.0Hz ๋ฒ”์œ„์˜ ์ž…๋ ฅ Data ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์ด๋ฉฐ 0.08, 0.31Hz ํฌ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜๊ฐ€ ํŠน์ •๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 3. Case 1: Segment ๊ฐ„๊ฒฉ์„ ์„ค์ •ํ•œ ์ž…๋ ฅ Data

Fig. 3. Case 1: Input Data with Segment Intervals

../../Resources/kiee/KIEE.2025.74.3.377/fig3.png

๊ทธ๋ฆผ 4. Case 1: RMS ์—๋„ˆ์ง€ ํ•„ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ „์•• ๋ฐ์ดํ„ฐ DFT; (a) 0.01-0.15Hz ๋Œ€์—ญ, (b) 0.15-1.0Hz ๋Œ€์—ญ

Fig. 4. Case 1: DFT of Voltage Data with RMS Energy Filter; (a) 0.01-0.15Hz Bands, (b) 0.15-1.0Hz Bands

../../Resources/kiee/KIEE.2025.74.3.377/fig4.png

ํŠน์ •๋œ ์ฃผํŒŒ์ˆ˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ Prony ๋ถ„์„์— ์žˆ์–ด ์ฐจ์ˆ˜๋ฅผ 233์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 5๋Š” ์‚ฌ๋ก€ 1์˜ ๋ณต์†Œ๋ชจ๋“œ Z-plane ์ด๋ฉฐ ํŠน์ • ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ€์ง„๋‹ค. Data๋ฅผ ๊ฐ segment๋กœ ์‹œ์ž‘์ง€์ ์„ ๋‚˜๋ˆ„์–ด Prony ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ ํ‘œ 3์€ ์‚ฌ๋ก€ 1์˜ Prony ๋ถ„์„ ์ฃผ์š” ์ฃผํŒŒ์ˆ˜ ์ง„๋™ ๋ชจ๋“œ์˜ ์ถ”์ •๊ฒฐ๊ณผ๋ฅผ ์ •๋ฆฌํ•œ ํ‘œ์ด๋‹ค. ๊ธฐ์กด ๋ณด๊ณ ๋œ ์ฃผํŒŒ์ˆ˜์™€ ์œ ์‚ฌํ•œ ์ฃผํŒŒ์ˆ˜์ธ 0.32Hz, 0.08Hz์—์„œ (-) damping์˜ ์ง„๋™์ด ํ™•์ธ๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 5. Case 1: Segment ๊ตฌ๊ฐ„๋ณ„ Prony Analysis Z-plane; (a) ์ฒซ ๋ฒˆ์งธ ๊ตฌ๊ฐ„, (b) ๋‘ ๋ฒˆ์งธ ๊ตฌ๊ฐ„, (c) ์„ธ ๋ฒˆ์งธ ๊ตฌ๊ฐ„

Fig. 5. Case 1: Prony Analysis Z-plane by Segment; (a) First Segment, (b) Second Segment, (c) Third Segment

../../Resources/kiee/KIEE.2025.74.3.377/fig5.png

ํ‘œ 3 Case 1: Prony ์ฃผ์š” ์ฃผํŒŒ์ˆ˜ ์ง„๋™ ๋ชจ๋“œ

Table 3 Case 1: Prony Analysis Main Frequency Oscillation Modes

Segment

real

imag

frequency

damping

ratio($\zeta_{p}$ )

2

0.9978

0.0659j

0.3180

-0.9978

2

0.9999

0.0151j

0.0731

-0.9998

3

1.0000

0.0159j

0.0767

-0.9998

3.2 Case Analysis 2 : 1.57Hz

์‚ฌ๋ก€ 2๋Š” 2018๋…„ 1์›” 29์ผ, ISO New England ์ „๋ ฅ ์‹œ์Šคํ…œ์˜ ๋Œ€ํ˜• ๋ฐœ์ „๊ธฐ์— ์˜ํ•ด ๋ฐœ์ƒํ•œ ์ง€์—ญ์ ์ธ ๊ฐ•์ œ์ง„๋™์œผ๋กœ 1.57Hz์˜ ์ฃผ์š” ๋ชจ๋“œ๊ฐ€ ์‹๋ณ„๋œ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค[14]. ๊ทธ๋ฆผ 6์€ ์‚ฌ๋ก€ 2์˜ ๊ฐ segment๊ฐ€ ์ ์šฉ๋œ ์ „์•• Data ๊ทธ๋ž˜ํ”„์ด๋‹ค. ๊ทธ๋ฆผ 7์€ ์ €์ฃผํŒŒ ๋Œ€์—ญ 1.0-2.0Hz ๋ฒ”์œ„์˜ ์ž…๋ ฅ Data ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์ด๋‹ค.

๊ทธ๋ฆผ 6. Segment ๊ฐ„๊ฒฉ์„ ์„ค์ •ํ•œ ์ž…๋ ฅ Data

Fig. 6. Input Data with Segment Intervals

../../Resources/kiee/KIEE.2025.74.3.377/fig6.png

๊ทธ๋ฆผ 7. Case 2: RMS ์—๋„ˆ์ง€ ํ•„ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ „์•• ๋ฐ์ดํ„ฐ DFT

Fig. 7. Case 2: DFT of Voltage Data with RMS Energy Filter

../../Resources/kiee/KIEE.2025.74.3.377/fig7.png

๊ทธ๋ฆผ 8์€ ์‚ฌ๋ก€ 2์˜ ๋ณต์†Œ๋ชจ๋“œ Z-plane ์ด๋ฉฐ ํŠน์ • ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ€์ง„๋‹ค. ํ‘œ 4๋Š” ์‚ฌ๋ก€ 2์˜ Prony ๋ถ„์„ ์ฃผ์š” ์ฃผํŒŒ์ˆ˜ ์ง„๋™ ๋ชจ๋“œ์˜ ์ถ”์ •๊ฒฐ๊ณผ๋ฅผ ์ •๋ฆฌํ•œ ํ‘œ์ด๋‹ค. ๊ธฐ์กด ๋ณด๊ณ ๋œ ์ฃผํŒŒ์ˆ˜์™€ ์œ ์‚ฌํ•œ ์ฃผํŒŒ์ˆ˜์ธ 1.57Hz์—์„œ (-) damping์˜ ์ง„๋™์ด ํ™•์ธ๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 8. Case 2: Segment ๊ตฌ๊ฐ„๋ณ„ Prony Analysis Z-plane; ์ฒซ ๋ฒˆ์งธ ๊ตฌ๊ฐ„ (a), ๋‘ ๋ฒˆ์งธ ๊ตฌ๊ฐ„ (b), ์„ธ ๋ฒˆ์งธ ๊ตฌ๊ฐ„ (c)

Fig. 8. Case 2: Prony Analysis Z-plane by Segment; First Segment (a), Second Segment (b), Third Segment (c)

../../Resources/kiee/KIEE.2025.74.3.377/fig8.png

ํ‘œ 4 Case 2: Prony ์ฃผ์š” ์ฃผํŒŒ์ˆ˜ ์ง„๋™ ๋ชจ๋“œ

Table 4 Case 2: Prony Analysis Main Frequency Oscillation Modes

Segment

real

imag

frequency

damping

ratio( $\zeta_{p}$)

2

0.9456

0.3257j

1.5710

-0.9454

3

0.9455

0.3258j

1.5715

-0.9454

4. ๊ฒฐ ๋ก 

Spring-Mass System ๋ฐ Barkhausen ๊ธฐ์ค€๋งŒ์œผ๋กœ๋Š” ๋‹ค์ˆ˜์˜ ๋ฐœ์ „๊ธฐ์™€ ๋ถ€ํ•˜๊ฐ€ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ๋ณตํ•ฉ ์ „๋ ฅ๋ง์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ง„๋™ ๋ชจ๋“œ๋ฅผ ์ •ํ™•ํžˆ ๋ถ„์„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ํ•ด์„์„ ์œ„ํ•ด Yule-Walker, Wavelet, Prony ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํšŒ๊ท€๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์–ด ์™”์œผ๋ฉฐ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ ์ค‘ Prony ๋ถ„์„์„ ํ†ตํ•ด ๊ณ„ํ†ต ์ „์•• ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ง„๋™ ๋ชจ๋“œ ์‹๋ณ„ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ์ „์•• ์ธก์ • ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ RMS ์—๋„ˆ์ง€ ํ•„ํ„ฐ๋กœ ์ฃผ์š” ์ง„๋™ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์„ ์šฐ์„  ์„ ๋ณ„ํ•œ ๋’ค, Prony ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ๋…ธ์ด์ฆˆ ๋ฏผ๊ฐ๋„์™€ ๊ณผ์ ํ•ฉ(overfitting) ์œ„ํ—˜์„ ๋™์‹œ์— ์ค„์ด๋„๋ก ํ•˜์˜€๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ Prony ๋ถ„์„์— ์•ž์„œ ํŠน์ • ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์„ ๋ฏธ๋ฆฌ ๊ฒฐ์ •ํ•จ์œผ๋กœ์จ ์ฐจ์ˆ˜๋ฅผ ๊ณผ๋„ํ•˜๊ฒŒ ์„ค์ •ํ•˜์—ฌ ๋…ธ์ด์ฆˆ๊ฐ€ ํฌํ•จ๋˜๊ฑฐ๋‚˜, ๋ฐ˜๋Œ€๋กœ ์ฐจ์ˆ˜๋ฅผ ๋„ˆ๋ฌด ๋‚ฎ๊ฒŒ ์žก์•„ ์ค‘์š”ํ•œ ๋ชจ๋“œ๋ฅผ ๋†“์น˜๋Š” ๋ฌธ์ œ๋ฅผ ์™„ํ™”์‹œํ‚จ๋‹ค. ๋˜ํ•œ ์—ฌ๋Ÿฌ ์ง„๋™๋ชจ๋“œ๊ฐ€ ํ˜ผ์žฌํ•˜๋Š” ๊ณ„ํ†ต์—์„œ ์„ ํ˜• ์˜ˆ์ธก ๊ณ„์ˆ˜ ๊ธฐ๋ฐ˜์˜ ์ž๊ธฐ์ƒ๊ด€ ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ๋ถ„์„์—์„œ๋„ ์ˆ˜์น˜์  ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ์‹ค์ œ ๋ฏธ๊ตญ ISO New England์—์„œ ๊ด€์ธก๋œ ์ „์•• ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ๊ธฐ์กด์— ๋ณด๊ณ ๋œ 0.08Hz, 0.31Hz, 1.57Hz ๊ทœ๋ชจ์˜ ์ง„๋™ ๋ชจ๋“œ์™€ ์ผ์น˜ํ•˜๋Š” ์ฃผํŒŒ์ˆ˜๋ฅผ ์ถ”์ •ํ•˜์˜€์œผ๋ฉฐ, ๋ฐœ์‚ฐ์ด ์šฐ๋ ค๋˜๋Š” ๋ชจ๋“œ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒ€์ถœํ•˜์˜€๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ์‹œ์Šคํ…œ์—์„œ์˜ ์ •๋ฆฝ๋œ ์ง„๋™์ด๋ก ์„ ์ •์˜ํ•˜๊ณ  ์ด๋ฅผ ์ „๋ ฅ์‹œ์Šคํ…œ์˜ ์ง„๋™ ํ•ด์„ ๊ด€์ ์—์„œ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ๋Œ€๊ทœ๋ชจ ์ „๋ ฅ๋ง์—์„œ๋Š” ๋‹จ์ˆœ ๊ธฐ๊ณ„ ํ•ด์„์ด๋‚˜ RF ํšŒ๋กœ ์ด๋ก ๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ค์šด ๋ณตํ•ฉ์ ์ธ ์ง„๋™ ๋ชจ๋“œ๊ฐ€ ์กด์žฌํ•˜๋ฉฐ, ์ด๋ฅผ ์‹๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹ค์ œ ๊ณ„ํ†ต ์ธก์ • ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ๋ถ„์„ํ•˜๋Š” Prony ๊ธฐ๋ฒ•์ด ํšจ๊ณผ์ ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ์ง„๋™ ๋ชจ๋“œ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์‹๋ณ„ํ•จ์œผ๋กœ์จ ํ–ฅํ›„ ์ „๋ ฅ๋ง ์ „์—ญ์˜ ์•ˆ์ •๋„ ํ‰๊ฐ€์™€ ์ œ์–ด ์ „๋žต ์ˆ˜๋ฆฝ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค.

Acknowledgements

๋ณธ ๋…ผ๋ฌธ์€ 2023ํ•™๋…„๋„ ๊ตญ๋ฆฝ๋ชฉํฌ๋Œ€ํ•™๊ต ๊ต๋‚ด์—ฐ๊ตฌ๋น„ ์ง€์›์— ์˜ํ•˜์—ฌ ์—ฐ๊ตฌ๋˜์—ˆ์Œ

This Research was supported by Research Funds of Mokpo National University in 2023

References

1 
G. -S. Seo, M. Colombino, I. Subotic, B. Johnson, D. GroรŸ, and F. Dรถrfler, โ€œDispatchable Virtual Oscillator Control for Decentralized Inverter-dominated Power Systems: Analysis and Experiments,โ€ 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 561-566, 2019. DOI : 10.1109/APEC.2019.8722028DOI
2 
A. Fernรกndez-Guillamรณn, E. Gรณmez-Lรกzaro, E. Muljadi, and ร. molina-garcรญa, โ€œPower systems with high renewable energy sources: A review of inertia and frequency control strategies over time,โ€ Renewable and Sustainable Energy Reviews, vol. 115, 2019. DOI : 10.1016/j.rser.2019.109369DOI
3 
K. S. Shim, S. J. Ahn, and J. H. Choi, โ€œSynchronization of low-frequency oscillation in power systems,โ€ Energies, vol. 10, no. 4, pp. 1-11, 2017. DOI : 10.3390/en10040558DOI
4 
T. Shintai, Y. Miura, and T. Ise, โ€œOscillation damping of a distributed generator using a virtual synchronous generator,โ€ IEEE Trans. Power Del., vol. 29, no. 2, pp. 668-676, 2014. DOI : 10.1109/TPWRD.2013.2281359DOI
5 
L. F. Fan, โ€œModeling type-4 wind in weak grids,โ€ IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 853-864, 2019. DOI : 10.1109/TSTE.2018.2849849DOI
6 
G. Zhang, W. Hu, D. Cao et al., โ€œDeep reinforcement learning-based approach for proportional resonance power system stabilizer to prevent ultra-low-frequency oscillations,โ€ IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 5260-5272, Nov. 2020. DOI : 10.1109/TSG.2020.2997790DOI
7 
J. Alipoor, Y. Miura, and T. Ise, โ€œPower system stabilization using virtual synchronous generator with alternating moment of inertia,โ€ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, Jun. 2015. DOI : 10.1109/JESTPE.2014.2362530DOI
8 
Nagurka, M. and S. Huang, โ€œA mass-spring-damper model of a bouncing ball,โ€ Am. Control Conf., vol. 1, pp. 499โ€“504, 2004. DOI : 10.23919/ACC.2004.1383652DOI
9 
Pozar, David M., Microwave and RF design of wireless systems, John Wiley & Sons, pp. 250-256, 2000.URL
10 
Yoon-Seong Choi, Sin-Ho Ryu, Seong-Hwan Kim, Dongho LEE, โ€œOptimizing Prony Analysis Degree Selection for Power System Oscillations using RMS Filtering,โ€ The Transactions of the Korean Institute of Electrical Engineers, vol. 72, no. 2, pp.127-132, 2023. DOI : 10.5370/KIEEP.2023.72.2.127DOI
11 
NERC Synchronized Measurement Working Group, Recommended oscillation analysis for monitoring and mitigation reference document, NERC, Nov. 2021.URL
12 
M. Netto, and L. Mili, โ€œA robust prony method for power system electromechanical modes identification,โ€ Proc. IEEE Power Energy Soc. Gen. Meeting, pp. 1-5, Jul. 2017. DOI : 10.1109/PESGM.2017.8274323DOI
13 
S. Maslennikov et al., โ€œA test cases library for methods locating the sources of sustained oscillations,โ€ Proc. IEEE Power Energy Soc. General Meeting (PESGM), pp. 1-5, Jul. 2016. DOI : 10.1109/PESGM.2016.7741772DOI
14 
P. W. Pande, S. Chakrabarti, and S. C. Srivastava, โ€œOnline Tuning of Power System Stabilizer using Synchrophasor Data,โ€ IEEE PES GTD Grand Int. Conference and Exposition Asia (GTD Asia), pp. 484-489, 2019. DOI : 10.1109/GTDAsia.2019.8715981DOI

์ €์ž์†Œ๊ฐœ

์ตœ์œค์„ฑ(Yoon-Seong Choi)
../../Resources/kiee/KIEE.2025.74.3.377/au1.png

He received the B.S. degree in electrical engineering from Mokpo National University, Muan, Korea, in 2023 and working toward the M.S. degree. He is studying the oscillation detection method and simulation technique in the power system.

์ด๋™ํ˜ธ (Dongho Lee)
../../Resources/kiee/KIEE.2025.74.3.377/au2.png

He received B.S. and Ph.D. degrees in electrical engineering from Korea University, Korea. He is currently an Associate professor at the Department of electrical and control engineering, Mokpo National University, Muan, Korea. His current research interests include power system, smart energy system, and wireless power transfer.