• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical Engineering, Gangneung-Wonju National University, Republic of Korea.)



Data mining, LSTM, MCC, Motor, Smart EOCR, State determination method, SVM

1. ์„œ ๋ก 

์ „๋™๊ธฐ๋Š” ๊ฐ€๊ฒฉ์ด ์ €๋ ดํ•˜๊ณ  ๊ฐ„๋‹จํ•œ ๊ตฌ์กฐ์™€ ๋ณด์ˆ˜์˜ ์šฉ์ด์„ฑ ๋“ฑ์˜ ์žฅ์ ์ด ๋งŽ์•„ ์‚ฐ์—… ์ „๋ฐ˜์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ „๊ธฐ์  ๋ฐ ๊ธฐ๊ณ„์  ๋ฌธ์ œ๋กœ ์ธํ•˜์—ฌ ์›์น˜ ์•Š๋Š” ์ „๋™๊ธฐ์˜ ์ •์ง€ ๋˜๋Š” ์†Œ์†์ด ๋ฐœ์ƒํ•˜๋ฉด ๊ทธ์˜ ์ˆ˜๋ช… ๋‹จ์ถ•, ์ƒ์‚ฐ์„ฑ ์ €ํ•˜, ๋ง‰๋Œ€ํ•œ ๋ณต๊ตฌ ์‹œ๊ฐ„ ๋ฐ ๋น„์šฉ์ด ์†Œ์š”๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณ„๋„์˜ ๋ณดํ˜ธ ๋ฐฉ์•ˆ์„ ๊ตฌ์ถ•ํ•˜์—ฌ์•ผ ํ•œ๋‹ค[1].

์ „๋™๊ธฐ์ œ์–ด๋ฐ˜(MCC, Motor Control Center)์˜ ์ „์ž์‹ ๊ณผ์ „๋ฅ˜๊ณ„์ „๊ธฐ(EOCR, Electronic Over Current Relay)๋Š” ์ „๋™๊ธฐ๊ฐ€ ์—ฐ๊ฒฐ๋œ ํšŒ๋กœ์—์„œ ๊ตฌ๋™ ์ค‘์— ๊ณผ์ „๋ฅ˜์— ์˜ํ•ด์„œ ์†Œ์†์ด ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ, ๊ณผ์ „๋ฅ˜๋ฅผ ์ฐจ๋‹จํ•˜๋Š” ๋ณดํ˜ธ๊ธฐ๊ธฐ์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ์ตœ๊ทผ์—๋Š” ์„ค๋น„ ์ƒํƒœ์— ๋”ฐ๋ฅธ ์˜ˆํ›„ ๊ธฐ๋ฐ˜ ์˜ˆ์ง€๋ณด์ „ ๊ฐœ๋…(prognosis-based predictive maintenance concept)์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š”๋ฐ”, ์ธ๊ณต์ง€๋Šฅ๊ธฐ๋ฒ•(AI, Artificial Intelligence)์„ ์ด์šฉํ•œ ์ „๋ ฅํ’ˆ์งˆ ๋ฐ ๊ณ ์žฅ์˜ˆ์ธก์— ๊ด€์‹ฌ์ด ์ฆ๋Œ€๋˜๊ณ  ์žˆ๋‹ค[2-4].

๊ด€๋ จ๋œ ๊ตญ๋‚ด ์—ฐ๊ตฌ์—์„œ๋Š”, ์ „๊ธฐ์‹ ํ˜ธ ๋ถ„์„์˜ ๋Œ€ํ‘œ์ ์ธ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ Park์˜ ๋ฒกํ„ฐ ์ ‘๊ทผ๋ฐฉ์‹(Parkโ€™s vector approach) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ์„ ํ•˜์—ฌ ์ „๋™๊ธฐ์˜ ๊ณ ์ •์ž ๋ฐ ํšŒ์ „์ž ๊ณ ์žฅ์„ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•[5], ๋‹ค๊ธฐ๋Šฅ ์ „๋™๊ธฐ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•œ ์‹œ์Šคํ…œ ์ปจํŠธ๋กค๋Ÿฌ ๊ฐœ๋ฐœ[6]์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ทผ๋ž˜์—๋Š” ์ „๊ธฐ์‹ ํ˜ธ ๋ถ„์„์„ ์ด์šฉํ•œ 3์ƒ ์œ ๋„์ „๋™๊ธฐ์˜ ๊ณ ์žฅ์ง„๋‹จ(fault diagnosis) ๋ฐ ์˜ˆ์ง€๋ณด์ „๊ธฐ๋ฒ•์ด ๋ฐœํ‘œ๋˜์—ˆ๋‹ค[7].

๊ด€๋ จ๋œ ํ•ด์™ธ ์—ฐ๊ตฌ์—์„œ๋Š”, ์ „๊ธฐ ํŽŒํ”„ ์‹œ์Šคํ…œ์˜ ์นผ๋งŒ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜ ์„ผ์„œ ๊ณ ์žฅ ๊ฐ์ง€ ๋ฐ ์‹๋ณ„(fault detection and identification) ๊ธฐ๋ฒ•[8], AI๋ฅผ ํ™œ์šฉํ•œ ์ „๋™๊ธฐ ์ƒํƒœ ์˜ˆ์ธกํ•˜๋Š” ์‹œ์Šคํ…œ[9]์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ตœ๊ทผ์—๋Š” D-S ์ฆ๊ฑฐ ์ด๋ก (evidence theory) ์ •๋ณด ์œตํ•ฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜(information fusion algorithm) ๊ธฐ๋ฐ˜์˜ ์ „๋™๊ธฐ ๊ณ ์žฅ์ง„๋‹จ[10], ์ง€์› ๋ฒกํ„ฐ ๋จธ์‹ (SVM, Support Vector Machine)์„ ์‚ฌ์šฉํ•œ ์œ ๋„์ „๋™๊ธฐ ๊ณ ์žฅ ์‹๋ณ„[11], ์ œํ•œ๋œ ์—ด ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•œ ์œ ๋„์ „๋™๊ธฐ ๊ณ ์žฅ์ง„๋‹จ์„ ์œ„ํ•œ Few-Shot ๊ฒฝ๋Ÿ‰ SqueezeNet ์•„ํ‚คํ…์ฒ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค[12].

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” MCC์˜ ์Šค๋งˆํŠธ EOCR์„ ์œ„ํ•œ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ง€๋ณด์ „๊ธฐ์ˆ  ๊ฐœ๋ฐœ ๊ณผ์ œ์˜ ์ผํ™˜์œผ๋กœ์„œ, ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹(Data Mining)์„ ์ด์šฉํ•œ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ์‹ค์ œ ํŽŒํ”„๋ฅผ ์ด์šฉํ•œ ์ „๋™๊ธฐ ์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•œ ํ›„, ๋น„์ •์ƒ ๋ถ€ํ•˜, ์—ญ๋ฐฉํ–ฅํšŒ์ „, ํŽŒํ”„์— ๋ฌผ์ด ์—†์–ด์„œ ์ „๋™๊ธฐ๊ฐ€ ๊ณตํšŒ์ „ํ•˜๋Š” ์ƒํƒœ ๋ฐ ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅํšŒ์ „ ๋“ฑ์˜ 4๊ฐ€์ง€ ์ƒํƒœ ํŒ๋ณ„์„ ์œ„ํ•œ ํ•™์Šต๋ฐ์ดํ„ฐ ๋ฐ ์‹œํ—˜๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ์ค‘์—์„œ SVM๊ณผ ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(LSTM, Long Short Term Memory) ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜๊ณ , Python ์–ธ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•œ๋‹ค. ๋์œผ๋กœ ์ œ์•ˆ๋œ ๋‘ ๊ฐ€์ง€ AI ๋ชจ๋ธ์˜ ํ˜ผ๋™ํ–‰๋ ฌ(Confusion matrix)๊ณผ ์ •๋ฐ€๋„(Precision), ์žฌํ˜„์œจ(Recall) ๋ฐ F1-score ๋“ฑ์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค.

2. MCC์˜ ์Šค๋งˆํŠธ EOCR ๊ธฐ๋ฐ˜ ์ „๋™๊ธฐ ์‹œ์Šคํ…œ

2.1 ์Šค๋งˆํŠธ EOCR

์Šค๋งˆํŠธ EOCR์€ 7,680Hz์˜ ๋น ๋ฅธ ์ธก์ • ์ฃผ๊ธฐ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ„์ธกํ•˜๊ณ , ๊ธฐ์กด MCC์˜ ์ผ๋ฐ˜์ ์ธ ๊ธฐ๋Šฅ ์ด์™ธ์˜ ์‹ค์‹œ๊ฐ„ ์ „๋ ฅํ’ˆ์งˆ ๊ฐ์‹œ, ์‹ค์‹œ๊ฐ„ ์„ค๋น„ ์˜ˆ์ง€๋ณด์ „ ๊ธฐ๋Šฅ, ์„ค๋น„ ์ด์ƒ ๊ฐ์ง€ ์•Œ๋žŒ ๋ฐ ์„ค๋น„ ์ด๋ ฅ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์„ค๋น„์˜ ํšจ์œจ์„ฑ ๋ฐ ์•ˆ์ •์„ฑ์„ ๊ฐ•ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ์Šค๋งˆํŠธ EOCR์„ ์‚ฌ์šฉํ•˜๋ฉด ํ™”์žฌ์™€ ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ ํ˜„์ €ํžˆ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ  ์ „๋ ฅ์˜ ํšจ์œจ์  ์‚ฌ์šฉ, ์—๋„ˆ์ง€ ์ ˆ์•ฝ ๋ฐ ์ƒ์‚ฐ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 1์€ ์Šค๋งˆํŠธ EOCR ์‹œ์Šคํ…œ์˜ ๊ตฌ์„ฑ๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™์ด, ์ „๋™๊ธฐ์˜ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ์ „์ž์‹ ๊ณผ์ „๋ฅ˜๊ณ„์ „๊ธฐ๋ฅผ ํ†ตํ•ด Edge ์ปดํ“จํŒ…, Cloud์™€ ์—ฐ๊ณ„๋œ๋‹ค. Cloud์—์„œ๋Š” AI ๊ธฐ๋ฐ˜ ์ƒํƒœํŒ๋ณ„๊ธฐ, AI ๊ธฐ๋ฐ˜ ์ „๋ฅ˜ ์˜ˆ์ง€๋ณด์ „ ๋ฐ ์ „๋ ฅํ’ˆ์งˆ ์ง€์ˆ˜ ๋“ฑ์„ ํ†ตํ•˜์—ฌ, ์‹ค์‹œ๊ฐ„ ์ „๋ ฅํ’ˆ์งˆ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Cloud ํ™˜๊ฒฝ์˜ ์œ ์ง€๋ณด์ˆ˜ ์ฒด๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค[1-3].

๊ทธ๋ฆผ 1. ์Šค๋งˆํŠธ EOCR ์‹œ์Šคํ…œ์˜ ๊ฐœ๋…๋„

Fig. 1. Conceptual diagram of the smart EOCR system

../../Resources/kiee/KIEE.2025.74.3.411/fig1.png

2.2 ์ˆ˜์ง‘ ๋ฐ์ดํ„ฐ

์Šค๋งˆํŠธ EOCR ์‹œ์Šคํ…œ์˜ ์ˆ˜์ง‘ ๋ฐ์ดํ„ฐ๋Š” ์ •์ƒ ๋ถ€ํ•˜์™€ ํŽŒํ”„์˜ ์ž…๊ตฌ๋ฅผ ๋ง‰์•„ ๋ฌผ ์œ ์ž…์„ ์ œํ•œํ•œ ๋น„์ •์ƒ ๋ถ€ํ•˜, ์—ญ๋ฐฉํ–ฅํšŒ์ „, ํŽŒํ”„์— ๋ฌผ์ด ์—†์–ด์„œ ์ „๋™๊ธฐ๊ฐ€ ๊ณตํšŒ์ „ํ•˜๋Š” ์ƒํƒœ ๋ฐ ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅํšŒ์ „์œผ๋กœ ๊ตฌ๋ถ„๋  ์ˆ˜ ์žˆ๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ๊ฐ 128 sample/cycle์˜ ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๋กœ 1์ดˆ์— ์ด 7,680๊ฐœ๊ฐ€ ๋œ๋‹ค. ๊ทธ๋ฆผ 2๋Š” ์‹ค ๊ณ„ํ†ต์—์„œ ์ˆ˜์ง‘๋œ 3์ƒ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” 7,680ร—4 ํฌ๊ธฐ์˜ CSV(Comma Separated Value) ํ˜•์‹์œผ๋กœ ์ €์žฅ๋˜๋Š”๋ฐ, ๊ฐ€๋กœ์ถ•์€ dataTime, 3์ƒ์˜ T, S, R์ƒ ์ „๋ฅ˜๋กœ์„œ ๋‹จ์œ„๋Š” ยตA์ด๋‹ค[1-3].

๊ทธ๋ฆผ 3์€ ์ „๋™๊ธฐ์˜ ์ •์ƒ ๋ถ€ํ•˜, ๋น„์ •์ƒ ๋ถ€ํ•˜ ๋ฐ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ƒํƒœ์˜ 1์ฃผ๊ธฐ T์ƒ ์ „๋ฅ˜ ํŒŒํ˜•์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 3๊ณผ ๊ฐ™์ด, ์ •์ƒ ๋ถ€ํ•˜์ธ ๊ฒฝ์šฐ๋Š” -0.467A์—์„œ 0.400A ๋ฒ”์œ„๋กœ, ๋น„์ •์ƒ ๋ถ€ํ•˜์ธ ๊ฒฝ์šฐ๋Š” -0.460A์—์„œ 0.396A ๋ฒ”์œ„๋กœ, ์—ญ๋ฐฉํ–ฅํšŒ์ „์ธ ๊ฒฝ์šฐ๋Š” -0.488A์—์„œ 0.425A ๋ฒ”์œ„๋กœ, ๋น„์ •์ƒ ๋ถ€ํ•˜์˜ ์—ญ๋ฐฉํ–ฅํšŒ์ „์ธ ๊ฒฝ์šฐ๋Š” -0.465A์—์„œ 0.403A ๋ฒ”์œ„๋กœ, ๋ฌผ ์—†๋Š” ๊ณตํšŒ์ „์ธ ๊ฒฝ์šฐ๋Š” -0.426A์—์„œ 0.360A ๋ฒ”์œ„๋กœ ๊ฐ๊ฐ ์šด์ „๋˜๋Š” ๊ฒƒ์„ ๊ฐ๊ฐ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๊ทธ๋ฆผ 2. ์‹ค ๊ณ„ํ†ต์—์„œ ์ˆ˜์ง‘๋œ 3์ƒ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ

Fig. 2. Three phase current data from real system

../../Resources/kiee/KIEE.2025.74.3.411/fig2.png

๊ทธ๋ฆผ 3. ๋‹ค์–‘ํ•œ ์ƒํƒœ์˜ T์ƒ ์ „๋ฅ˜ ํŒŒํ˜•

Fig. 3. T phase current waveforms in various states

../../Resources/kiee/KIEE.2025.74.3.411/fig3.png

3. ์Šค๋งˆํŠธ EOCR์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•

3.1 ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ์„ค๊ณ„

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”, ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฒ• ์ค‘์—์„œ ๋„๋ฆฌ ์•Œ๋ ค์ง„ SVM๊ณผ LSTM์„ ์ด์šฉํ•˜์—ฌ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 4๋Š” ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ํ๋ฆ„๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 4์™€ ๊ฐ™์ด, ๋จผ์ €, ์ œ์‹œํ•œ ๊ธฐ๋ฒ•์˜ ์ดˆ๊ธฐํ™”๋ฅผ ํ•œ ํ›„, ์‹ค ๊ณ„ํ†ต ํŽŒํ”„ ์‹œ์Šคํ…œ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ, ์ˆ˜์ง‘ํ•œ๋‹ค. ํ•™์Šต๋ฐ์ดํ„ฐ ๋ฐ ํ•™์Šต๋˜์ง€ ์•Š์€ ์‹œํ—˜๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด ๊ตฌ์ถ•ํ•œ๋‹ค. SVM ๋ฐ LSTM ๋ชจ๋ธ์„ ์ƒ์„ฑํ•˜๊ณ , ์ƒ์„ฑ๋œ ๋ชจ๋ธ์„ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ง€๋„ํ•™์Šต ์‹œํ‚จ๋‹ค. ์ตœ์ ์˜ SVM ๋ฐ LSTM ๋ชจ๋ธ์„ ์ƒ์„ฑํ•œ ํ›„, ์‹œํ—˜๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๋ชจ๋ธ์„ ๊ฒ€์ฆํ•œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

๊ทธ๋ฆผ 4. ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ํ๋ฆ„๋„

Fig. 4. Flowchart of the data mining-based state determination technique.

../../Resources/kiee/KIEE.2025.74.3.411/fig4.png

3.1.1 SVM ๋ชจ๋ธ

SVM ๋ชจ๋ธ์€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ํŒจํ„ด์„ ์ธ์‹ํ•˜๋Š” ์ง€๋„ํ•™์Šต ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ„๋ฅ˜ ๋ฐ ํšŒ๊ท€ ๋ถ„์„์— ์‚ฌ์šฉ๋œ๋‹ค. SVM์˜ ๋ชฉ์ ์€ ์ฃผ์–ด์ง„ ์ž…๋ ฅ์œผ๋กœ๋ถ€ํ„ฐ ์ถœ๋ ฅ๊ฐ’์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์ฐพ๋Š” ๊ฒƒ์œผ๋กœ, ํ•œ ํด๋ž˜์Šค๋ฅผ ๋‹ค๋ฅธ ํด๋ž˜์Šค์™€ ๊ตฌ๋ถ„ํ•˜๋Š” ์ดˆํ‰๋ฉด ๋˜๋Š” ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฅผ ์ฐพ๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋ฆผ 5๋Š” SVM ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 5์™€ ๊ฐ™์ด, SVM์€ ์ตœ์ ์˜ ๊ฒฐ์ • ๊ฒฝ๊ณ„, ์–‘์˜ ๊ฒฐ์ • ๊ฒฝ๊ณ„, ์Œ์˜ ๊ฒฐ์ • ๊ฒฝ๊ณ„, ๋งˆ์ง„์œผ๋กœ ๋‚˜๋‰˜๋Š”๋ฐ, ์Šค์ผ€์ผ๋ง์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ๋“ค์ด ์ฐํžˆ๋Š” ์œ„์น˜๊ฐ€ ๋‹ฌ๋ผ์ง€๊ณ , ๊ทธ์— ๋”ฐ๋ผ์„œ ๊ฒฐ์ • ๊ฒฝ๊ณ„๊ฐ€ ๋‹ฌ๋ผ์ง€๊ธฐ ๋•Œ๋ฌธ์— ์Šค์ผ€์ผ๋ง์„ ์ž˜ํ•ด์ฃผ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ•„์š”ํ•œ ๋ถ„๋ฅ˜๋Š” ์„ ํ˜•์œผ๋กœ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ, ์ปค๋„ ํ•จ์ˆ˜๋กœ๋Š” ๋ฐฉ์‚ฌ ๊ธฐ์ € ํ•จ์ˆ˜(RBF, Radial Basis Function) ์ปค๋„๋กœ์„œ ๋ฌดํ•œํ•œ ์ฐจ์›์œผ๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ gamma์™€ C๊ฐ’์„ ๋ณ€๊ฒฝํ•˜๋ฉฐ ์ตœ์ ์˜ ์ปค๋„์„ ์ฐพ์•„๋‚ด์–ด ์‚ฌ์šฉํ•˜์˜€๋‹ค[1,3].

๊ทธ๋ฆผ 5. SVM ๋ชจ๋ธ์˜ ๊ตฌ์กฐ

Fig. 5. Structure of SVM model

../../Resources/kiee/KIEE.2025.74.3.411/fig5.png

3.1.2 LSTM ๋ชจ๋ธ

LSTM ๋ชจ๋ธ์€ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง(RNN, Recurrent Neural Network) ๊ธฐ๋ฒ•์˜ ํ•˜๋‚˜๋กœ ์…€, ์ž…๋ ฅ ๊ฒŒ์ดํŠธ, ์ถœ๋ ฅ ๊ฒŒ์ดํŠธ, ๋ง๊ฐ ๊ฒŒ์ดํŠธ๋ฅผ ์ด์šฉํ•ด ๊ธฐ์กด RNN์˜ ๋ฌธ์ œ์ธ ๊ธฐ์šธ๊ธฐ ์†Œ๋ฉธ ๋ฌธ์ œ๋ฅผ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 6. LSTM ๋ชจ๋ธ์˜ ๊ตฌ์กฐ

Fig. 6. Structure of LSTM model

../../Resources/kiee/KIEE.2025.74.3.411/fig6.png

์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ์˜ˆ์ธก, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ, ์Œ์„ฑ ์ธ์‹, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋“ฑ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ชจ๋ธ ์ค‘ ํ•˜๋‚˜๋กœ์„œ ๊ธด ์˜์กด ๊ธฐ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๋Š” ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•  ๋Šฅ๋ ฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆผ 6์€ LSTM ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 6๊ณผ ๊ฐ™์ด, LSTM์€ ๋ง๊ฐ ๊ฒŒ์ดํŠธ, ์ž…๋ ฅ ๊ฒŒ์ดํŠธ, ์ถœ๋ ฅ ๊ฒŒ์ดํŠธ์˜ ์„ธ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ๊ฒŒ์ดํŠธ๋กœ ๋‚˜๋‰œ๋‹ค. ์ž…๋ ฅ ๊ฒŒ์ดํŠธ๋Š” ๋‹ค์Œ ์…€์— ์–ด๋–ค ์ •๋ณด๊ฐ€ ๋“ค์–ด๊ฐˆ์ง€ ๊ฒฐ์ •ํ•˜๊ณ , ๋ง๊ฐ ๊ฒŒ์ดํŠธ๋Š” ์žŠ์–ด์•ผ ํ•  ์ •๋ณด๋ฅผ ์ œ์–ดํ•˜๋ฉฐ, ์ถœ๋ ฅ ๊ฒŒ์ดํŠธ๋Š” ์ตœ์ข…์ ์œผ๋กœ ์ด์ „ ์ •๋ณด๋ฅผ ๋‹ค์Œ ์…€์— ์ถœ๋ ฅํ•œ๋‹ค[1,3].

3.2 ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ๊ตฌํ˜„

๋‘ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜์˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์€ Python ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, SVM ๋ชจ๋ธ์€ scikit-learn ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ, LSTM ๋ชจ๋ธ์€ tensorflow ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๊ฐ๊ฐ ํ™œ์šฉํ•˜์˜€๋‹ค. ๊ฐ ๋ชจ๋ธ์˜ ํ•™์Šต ๋ฐ ์‹œํ—˜์€ i7-10700, 2.90GHz, 32GB RAM์ด ์žฅ์ฐฉ๋œ ์ปดํ“จํ„ฐ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค.

3.2.1 SVM ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„

๊ทธ๋ฆผ 7์€ SVM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ Python ์ฝ”๋“œ ์ผ๋ถ€๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 7๊ณผ ๊ฐ™์ด, scikit-learn ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. ์ปค๋„ ํ•จ์ˆ˜๋Š” RBF๋กœ์„œ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ์ธ gamma์™€ C๊ฐ’์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ถœ๋ ฅ์œผ๋กœ 4๊ฐ€์ง€ ํด๋ž˜์Šค๋ฅผ ์ง€์ •ํ•˜์—ฌ, ์ƒํƒœ๋ฅผ ํŒ๋ณ„ํ•˜๋„๋ก ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 7. SVM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ Python ์ฝ”๋“œ ์ผ๋ถ€

Fig. 7. Part of Python code for SVM model-based state determination technique

../../Resources/kiee/KIEE.2025.74.3.411/fig7.png

3.2.2 LSTM

๊ทธ๋ฆผ 8์€ LSTM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ Python ์ฝ”๋“œ ์ผ๋ถ€๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 8๊ณผ ๊ฐ™์ด, ์ด๋Š” Tensorflow ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. LSTM ์ธต๊ณผ Dense ์ธต 2๊ฐœ์˜ ์€๋‹‰์ธต์„ ๊ฐ–๋Š” ๊ตฌ์กฐ๋กœ์„œ ์ž…๋ ฅ์ธต์˜ ๋‰ด๋Ÿฐ ์ˆ˜๋Š” ์‹œ๊ฐ„, 3์ƒ ์ „๋ฅ˜ ๋“ฑ์˜ ์ด 4๊ฐœ์ด๊ณ , ์ถœ๋ ฅ์ธต์€ ๋ถ„๋ฅ˜์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” Softmax ํ™œ์„ฑ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒํƒœ๋ฅผ ํŒ๋ณ„ํ•˜๋„๋ก ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 8. LSTM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ Python ์ฝ”๋“œ ์ผ๋ถ€

Fig. 8. Part of Python code for LSTM model-based state determination technique

../../Resources/kiee/KIEE.2025.74.3.411/fig8.png

4. ์„ฑ๋Šฅํ‰๊ฐ€ ๋ฐ ๊ฒฐ๊ณผ

์ œ์•ˆ๋œ AI ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋‘ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ์€ Precision, Recall, F1-Score ๋ฐ ์ •ํ™•๋„(Accuracy)์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์ด์šฉํ•˜์˜€๋‹ค. ์ •ํ™•๋„๋Š” ์‹ (1)๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(1)
${Accuracy}=\dfrac{{TP}+{TN}}{{TP}+{TN}+{FP}+{FN}}$

์—ฌ๊ธฐ์„œ, TP(true positive)๋Š” ์‹ค์ œ๋กœ positive์ธ๋ฐ ์˜ˆ์ธก๋„ positive๋กœ ์ž˜๋œ ๊ฒฝ์šฐ๋ฅผ, FN(false negative)๋Š” ์‹ค์ œ๋กœ๋Š” positive์ธ๋ฐ ์˜ˆ์ธก์€ negative๋กœ ์ž˜๋ชป๋œ ๊ฒฝ์šฐ, FP(false positive)๋Š” ์‹ค์ œ๋กœ๋Š” negative์ธ๋ฐ ์˜ˆ์ธก์ด positive๋กœ ์ž˜๋ชป๋œ ๊ฒฝ์šฐ, TN(true negative)๋Š” ์‹ค์ œ๋กœ๋„ negative์ธ๋ฐ ์˜ˆ์ธก๋„ negative๋กœ ์ž˜๋œ ๊ฒฝ์šฐ๋ฅผ ๊ฐ๊ฐ ๋‚˜ํƒ€๋‚ธ๋‹ค.

Precision, Recall ๋ฐ F1-Score๋Š” ์‹ (2), ์‹ (3) ๋ฐ ์‹ (4)์™€ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(2)
${Precision}=\dfrac{{TP}}{{TP}+{FP}}$
(3)
${Recall}=\dfrac{{TP}}{{TP}+{FN}}$
(4)
${F}1-{Score}=2\times\dfrac{{Precision}\times{Recall}}{{Precision}+{Recall}}$

4.1 SVM ๋ชจ๋ธ์˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ๊ฒฐ๊ณผ

ํ˜ผ๋™ํ–‰๋ ฌ์€ ์–ด๋–ค ๊ฐœ์ธ์ด๋‚˜ ๋ชจ๋ธ, ๊ฒ€์‚ฌ๋„๊ตฌ, ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง„๋‹จยท๋ถ„๋ฅ˜ยทํŒ๋ณ„ยท์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ณ ์•ˆ๋˜์—ˆ๋Š”๋ฐ, ์˜ค๋ฅ˜ํ–‰๋ ฌ(Error matrix)์ด๋ผ๊ณ ๋„ ํ•œ๋‹ค[1,9,11].

๊ทธ๋ฆผ 9๋Š” SVM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ํ˜ผ๋™ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 9์™€ ๊ฐ™์ด, ๋น„์ •์ƒ ๋ถ€ํ•˜์˜ ๊ฒฝ์šฐ๋ฅผ ๋น„์ •์ƒ ๋ถ€ํ•˜๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 12๋ฒˆ, ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ž˜๋ชป ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 6๋ฒˆ, ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์˜ ๊ฒฝ์šฐ๋ฅผ ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 21๋ฒˆ์ด์—ˆ๋‹ค. ๋˜ํ•œ, ๋ฌผ ์—†๋Š” ๊ณตํšŒ์ „์˜ ๊ฒฝ์šฐ๋ฅผ ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ž˜๋ชป ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 6๋ฒˆ, ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์„ ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ž˜๋ชป ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 7๋ฒˆ์ด์—ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ SVM ๋ชจ๋ธ ๊ธฐ๋ฒ•์€ 72.06%์˜ ์ƒํƒœ ํŒ๋ณ„์„ ์œ„ํ•œ ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ 9. SVM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ๊ธฐ๋ฒ•์˜ ํ˜ผ๋™ํ–‰๋ ฌ

Fig. 9. Confusion matrix of SVM model-based state determination technique

../../Resources/kiee/KIEE.2025.74.3.411/fig9.png

ํ‘œ 1์€ ์ƒํƒœ ํŒ๋ณ„์„ ์œ„ํ•œ SVM ๋ชจ๋ธ์˜ ํ‰๊ฐ€ ์ง€ํ‘œ์— ์˜ํ•œ ์„ฑ๋Šฅ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ‘œ 1๊ณผ ๊ฐ™์ด, ๋น„์ •์ƒ ๋ถ€ํ•˜, ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „, ๋ฌผ์—†๋Š” ๊ณตํšŒ์ „ ๋ฐ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์˜ ์„ฑ๋Šฅํ‰๊ฐ€ ์ง€ํ‘œ์ธ F1-score๋Š” ๊ฐ๊ฐ 0.80, 0.69, 0.70 ๋ฐ 0.72๋กœ ํ‰๊ท ์€ 0.73์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, Precision ๋ฐ Recall์˜ ํ‰๊ท ์€ 0.88, 0.69์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

ํ‘œ 1 ์ƒํƒœ ํŒ๋ณ„์„ ์œ„ํ•œ SVM ๋ชจ๋ธ์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ํ†ตํ•œ ์„ฑ๋Šฅ ๊ฒฐ๊ณผ

Table 1 Performance results through evaluation metrics of SVM model for state determination

Case

Precision

Recall

F1-Score

Abnormal

1.00

0.67

0.80

Abnormal_reverse

0.53

1.00

0.69

Nowater

1.00

0.54

0.70

Reverse

1.00

0.56

0.72

Average of 4 states

0.88

0.69

0.73

4.2 LSTM ๋ชจ๋ธ์˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ๊ฒฐ๊ณผ

๊ทธ๋ฆผ 10์€ LSTM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์˜ ํ˜ผ๋™ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 10๊ณผ ๊ฐ™์ด, ๋น„์ •์ƒ ๋ถ€ํ•˜์˜ ๊ฒฝ์šฐ๋ฅผ ๋น„์ •์ƒ ๋ถ€ํ•˜๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 18๋ฒˆ, ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์˜ ๊ฒฝ์šฐ๋ฅผ ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 21๋ฒˆ, ๋ฌผ ์—†๋Š” ๊ณตํšŒ์ „์˜ ๊ฒฝ์šฐ๋ฅผ ๋ฌผ ์—†๋Š” ๊ณตํšŒ์ „์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 12๋ฒˆ, ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ž˜๋ชป ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 1๋ฒˆ, ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์˜ ๊ฒฝ์šฐ๋ฅผ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 14๋ฒˆ, ๋น„์ •์ƒ ๋ถ€ํ•˜๋กœ ์ž˜๋ชป ์˜ˆ์ธกํ•œ ๊ฒฝ์šฐ๋Š” 2๋ฒˆ์ด์—ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ 95.59%์˜ ์ •ํ™•๋„๋ฅผ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๊ทธ๋ฆผ 10. LSTM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ๊ธฐ๋ฒ•์˜ ํ˜ผ๋™ํ–‰๋ ฌ

Fig. 10. Confusion matrix of LSTM model-based state determination technique

../../Resources/kiee/KIEE.2025.74.3.411/fig10.png

ํ‘œ 2๋Š” ์ƒํƒœ ํŒ๋ณ„์„ ์œ„ํ•œ LSTM ๋ชจ๋ธ์˜ ํ‰๊ฐ€ ์ง€ํ‘œ์— ์˜ํ•œ์„ฑ๋Šฅ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ‘œ 2์™€ ๊ฐ™์ด, ๋น„์ •์ƒ ๋ถ€ํ•˜, ๋น„์ •์ƒ ๋ถ€ํ•˜ ์‹œ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „, ๋ฌผ์—†๋Š” ๊ณตํšŒ์ „ ๋ฐ ์—ญ๋ฐฉํ–ฅ ํšŒ์ „์˜ ์„ฑ๋Šฅํ‰๊ฐ€ ์ง€ํ‘œ์ธ F1-score๋Š” ๊ฐ๊ฐ 0.95, 0.98, 0.96 ๋ฐ 0.93์œผ๋กœ ํ‰๊ท ์€ 0.96์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, Precision ๋ฐ Recall์˜ ํ‰๊ท ์€ 0.96, 0.95์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

ํ‘œ 2 ์ƒํƒœ ํŒ๋ณ„์„ ์œ„ํ•œ LSTM ๋ชจ๋ธ์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ํ†ตํ•œ ์„ฑ๋Šฅ ๊ฒฐ๊ณผ

Table 2 Performance results through evaluation metrics of LSTM model for state determination

Case

Precision

Recall

F1-Score

Abnormal

0.90

1.00

0.95

Abnormal_reverse

0.95

1.00

0.98

Nowater

1.00

0.92

0.96

Reverse

1.00

0.88

0.93

Average of 4 states

0.96

0.95

0.95

4.3 ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ

ํ‘œ 3์€ SVM ๋ฐ LSTM ๋ชจ๋ธ์˜ ํ‰๊ฐ€ ์ง€ํ‘œ์— ๋”ฐ๋ฅธ ์ƒํƒœ ํŒ๋ณ„์˜ ์„ฑ๋Šฅ ๋น„๊ต๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ‘œ 3๊ณผ ๊ฐ™์ด, LSTM ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„์˜ Precision์€ 0.96, SVM ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ƒํƒœ ํŒ๋ณ„์˜ Precision์€ 0.88์œผ๋กœ์„œ, LSTM ๋ชจ๋ธ์˜ Precision์ด 0.08 ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. LSTM ์ƒํƒœ ํŒ๋ณ„์˜ Recall์€ 0.95, SVM ์ƒํƒœ ํŒ๋ณ„์˜ Recall์€ 0.69๋กœ์„œ, LSTM ๋ชจ๋ธ์˜ Recall์ด 0.26 ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. LSTM ์ƒํƒœ ํŒ๋ณ„์˜ F1-Score๋Š” 0.95, SVM ์ƒํƒœ ํŒ๋ณ„์ด F1-Score๋Š” 0.73์œผ๋กœ์„œ, LSTM ๋ชจ๋ธ์˜ F1-Score๊ฐ€ 0.22 ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ, ์ •ํ™•๋„์˜ ๊ฒฝ์šฐ์—๋Š”, LSTM ๋ชจ๋ธ์ด SVM ๋ชจ๋ธ๋ณด๋‹ค ์ƒํƒœ ํŒ๋ณ„์˜ ์„ฑ๋Šฅ์ด 23.53% ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฐ˜ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์—์„œ๋Š”, ๋‹ค์–‘ํ•œ ์„ฑ๋Šฅ ์ง€์ˆ˜์˜ ๋น„๊ต ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•˜์—ฌ LSTM ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ๋” ์šฐ์ˆ˜ํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

ํ‘œ 3 SVM ๋ฐ LSTM ๋ชจ๋ธ์˜ ์ƒํƒœ ํŒ๋ณ„์˜ ์„ฑ๋Šฅ ๋น„๊ต

Table 3 Performance comparison of state determination by evaluation metrics between SVM and LSTM models

Model Type

Precision

Recall

F1-Score

Accuracy

SVM

0.88

0.69

0.73

72.06%

LSTM

0.96

0.95

0.95

95.59%

5. ๊ฒฐ ๋ก 

์ „๋™๊ธฐ์—์„œ ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ, ์ˆ˜๋ช… ๋‹จ์ถ•, ๋ง‰๋Œ€ํ•œ ๋ณต๊ตฌ ์‹œ๊ฐ„ ๋ฐ ๋น„์šฉ์ด ์†Œ์š”๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณดํ˜ธ ๋ฐฉ์•ˆ์ด ๋ชจ์ƒ‰๋˜์–ด์•ผ ํ•œ๋‹ค. ์ตœ๊ทผ ์„ค๋น„ ์ƒํƒœ์˜ ์˜ˆ์ง€ ๋ณด์ „์˜ ํ™œ์šฉ์„ฑ ํ™•๋Œ€๋ฅผ ์œ„ํ•˜์—ฌ AI ๊ธฐ๋ฒ•์˜ ์ ์šฉ์ด ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” EOCR ๊ธฐ๋ฐ˜ MCC๋ฅผ ์œ„ํ•œ AI๋ฅผ ์‘์šฉํ•œ ์˜ˆ์ง€๋ณด์ „ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ๊ณผ์ •์—์„œ, ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ๋ฒ•์˜ SVM ๋ฐ LSTM ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ค ๊ณ„ํ†ต ํŽŒํ”„ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์…‹์„ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, SVM ๋ชจ๋ธ๊ณผ LSTM ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ƒํƒœ ํŒ๋ณ„ ๊ธฐ๋ฒ•์„ ๊ตฌํ˜„ํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. SVM ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ํ•™์Šต์— ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์€ ์•ฝ 10์ดˆ, LSTM ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ํ•™์Šต์— ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์€ ์•ฝ 1์‹œ๊ฐ„์œผ๋กœ ํ•™์Šต ์†๋„ ์ธก๋ฉด์—์„œ๋Š” SVM ๋ชจ๋ธ์ด ์šฐ์ˆ˜ํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋‘ ๋ชจ๋ธ ์‹œํ—˜ ์‹œ, SVM ๋ชจ๋ธ๊ณผ LSTM ๋ชจ๋ธ์˜ ์ƒํƒœ ํŒ๋ณ„ ์‹œ๊ฐ„์€ ์•ฝ 0.1์ดˆ ์ด๋‚ด๋กœ์„œ, ๋™์ผํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘ ๋ชจ๋ธ์˜ ํ˜ผ๋™ํ–‰๋ ฌ, Precision, Recall ๋ฐ F1-score์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, LSTM ๋ชจ๋ธ์ด SVM ๋ชจ๋ธ๋ณด๋‹ค ์ „๋ฐ˜์ ์œผ๋กœ ๋” ์šฐ์ˆ˜ํ•˜๊ฒŒ ์ƒํƒœ๋ฅผ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

ํ–ฅํ›„, ์‹ ๋ขฐ์„ฑ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋งŽ์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘, ๊ฒ€์ฆํ•  ์˜ˆ์ •์ด๋‹ค.

References

1 
C. W. Park, Y. G. Lee, et al., โ€œDevelopment of smart EOCR system technology with AI-based fault prediction and improved power quality function for MCC,โ€ Ministry of SMEs and Startups, Final Report, pp. 1โˆผ91, 2024. 6.URL
2 
C. W. Park, K. M. Lee, โ€œTest Report,โ€ GWNU, pp. 1-14, 2024. 6.URL
3 
C. W. Park, Y. K. Lee, et al., โ€œComparison of Status Classification Technique for Smart EOCR using Data Mining,โ€ 2024 KIEE Summer Conf., KO022, 2024. 7.URL
4 
S. H. Lee, โ€œโ€˜Equipment predictive maintenance technologyโ€™, the core of smart factories,โ€ Instrumentation Technology, pp. 124-129, 2017. 11.URL
5 
Y. J. Go, โ€œA Study on Electrical Faults Verification and Diagnosis of Three-phase Induction motor,โ€ Chonnam National University, Ph.D's Thesis, pp. 1-165, 2016. 8.URL
6 
J. Y. Seo, et al., โ€œDevelopment of the System Controller for Multi Functional Motor Protection,โ€ 2016 Korea Information and Communication Society Fall Conference, pp. 830-832, 2016. 10.URL
7 
K. D. Kim, โ€œA Study on the Fault Diagnosis and Predictive Maintenance of Three-phase Induction Motor using Electrical Signal Analysis,โ€ Seoul National University of Science and Technology, Master's Thesis, pp. 1-116, 2022. 2.URL
8 
M. Rezaee, et al., โ€œKalman filter based sensor fault detection and identification in an electro-pump system,โ€ 2017 5th International Conference on Control, Instrumentation, and Automation, pp. 12-17, 2017.DOI
9 
S. Bundasak, P. Wittayasirikul, โ€œPredictive maintenance using AI for Motor health prediction system,โ€ 2022 International Electrical Engineering Congress, pp. 1-4, 2022, 5.DOI
10 
L. Zhao, H. Sun, โ€œMotor Fault Diagnosis Based on D-S Evidence Theory Information Fusion Algorithm,โ€ 2024 ICICACS, pp. 1-7, 2024.DOI
11 
P. Zitha, B. A. Thango, โ€œOn the Study of Induction Motor Fault Identification using Support Vector Machine Algorithms,โ€ 2023 SAUPEC Conference, Johannesburg, South Africa, January 2023.DOI
12 
F. M. Siraj, J. Uddin, K. Choi, et al., โ€œFew-Shot Lightweight SqueezeNet Architecture for Induction Motor Fault Diagnosis Using Limited Thermal Image Dataset,โ€ IEEE Access, vol. 12, pp. 50986-50997, April 2024.DOI

์ €์ž์†Œ๊ฐœ

์ด๊ฒฝ๋ฏผ(Kyung-Min Lee)
../../Resources/kiee/KIEE.2025.74.3.411/au1.png

He was born in Korea. He received his B.S., M.S. and Ph.D. degrees in Electrical Engineering from Gangneung-Wonju National University, Wonju, Korea, in 2014, 2017, and 2023, respectively. He is a post-doctor at Gangneung-Wonju National University, since 2023. He is a lecturer at Myongji College, since 2024. His research interests include Smartgrid, LVDC, Microgrid, RES, PMU, AI application of power system, power system modeling & control, and power system protection. He is a member of the KIEE, KIIEE, and IEEE. Dr. Lee was awarded the Paper Prize of KIIEE in 2020, the Best Paper of the APAP in 2021, and the Best Paper of KOWEPO in 2021, 2022, and the Best Paper of KHNP in 2023, and the Best Paper of KERI in 2024.

Tel : 033-760-8796, Fax : 033-760-8781

E-mail : point2529@gwnu.ac.kr

๋ฐ•์ฒ ์›(Chul-Won Park)
../../Resources/kiee/KIEE.2025.74.3.411/au2.png

He was born in Korea. He received his B.S., M.S. and Ph.D. degrees in Electrical Engineering from Sungkyunkwan University, Seoul, Korea, in 1988, 1990, and 1996, respectively. From 1989 to 1993 he was an associate researcher at Lucky GoldStar Industrial Systems. From 1993 to 1996, he was a senior researcher at PROCOM system and lecturer at S.K.K. University. At present, he is a professor in the Department of Electrical Engineering at Gangneung-Wonju National University, since 1997. His research interests include power IT, IED, LVDC, MVDC, Microgrid, Hybrid, RES, PMU, AI application to power grid, power system modeling & control, and computer application in power system. He is a member of the KIEE, KIIEE, and IEEE. Dr. Park was awarded the Paper Prize of KIEE in 2010, 2020, the Paper Prize of the KOFST in 2017, the Best Paper of the APAP in 2021, the Best Paper of KOWEPO in 2021, 2022, and the Best Paper of KHNP in 2023, and the Best Paper of KERI in 2024.

Tel : 033-760-8786

Fax : 033-760-8781

E-mail : cwpark1@gwnu.ac.kr