• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Information, Communication, and Electronic Engineering, The Catholic University of Korea, Republic of Korea.)



Optical Flow, Realtime System, Lucas-Kanade algorithm, VLSI design

1. ์„œ ๋ก 

Optical flow๋Š” ์—ฐ์†๋œ ์˜์ƒ ํ”„๋ ˆ์ž„ ๊ฐ„์˜ ํ”ฝ์…€ ์ด๋™์„ ๋ถ„์„ํ•˜๊ณ  ํ”ฝ์…€์˜ ๋ณ€ํ™”๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜์—ฌ ๊ฐ์ฒด์˜ ์›€์ง์ž„์„ ์ถ”์ •ํ•˜๋Š” ๊ธฐ์ˆ ์ด๋ฉฐ ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋กœ๋ด‡ ๋น„์ „, ์ž์œจ์ฃผํ–‰, ๊ฐ์ฒด์ถ”์ , ํ–‰๋™๋ถ„์„ ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋œ๋‹ค[1]. 40์—ฌ๋…„๊ฐ„ ๋ฐœ์ „๋˜์–ด ์˜จ optical flow์— ๋Œ€ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ๋ฒ•๋“ค์ด ์ œ์•ˆ๋˜์—ˆ์œผ๋ฉฐ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ฐจ๋“ฑ์ ‘๊ทผ๋ฒ•(differential method), ์˜์—ญ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•(region-based matching method), ์—๋„ˆ์ง€๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•(energy-based method), ์œ„์ƒ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•(phase- based method) ๋“ฑ์ด ์žˆ๋‹ค[2]. ํŠนํžˆ ์ฐจ๋“ฑ์ ‘๊ทผ๋ฒ•์— ์†ํ•˜๋Š” ๊ธฐ์šธ๊ธฐ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘์— Horn-Schunck(HS)[3]์™€ Lucas-Kanade (LK)[4] ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ดˆ๊ธฐ์— ์ œ์•ˆ๋˜์—ˆ์œผ๋ฉฐ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์–ด ์ดํ›„ ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ์ด๋ฅผ ๋ณ€ํ˜•ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ๋ฐ ํ•˜๋“œ์›จ์–ด ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•˜์˜€๋‹ค[5-13]. LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์—ฐ์†๋œ ํ”„๋ ˆ์ž„์—์„œ ํฐ ๋ณ€์œ„๋ฅผ ๊ฐ–๋Š” ๋ฌผ์ฒด์˜ ์›€์ง์ž„ ์ถ”์ •์ด ๋ถ€์ •ํ™•ํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค[1]. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ”ผ๋ผ๋ฏธ๋“œ ํ˜•ํƒœ์˜ ๋‹ค์ค‘ ์Šค์ผ€์ผ์—์„œ ๋ฐ˜๋ณต์ ์ธ ์›Œํ•‘ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์˜€๊ณ  ์ •ํ™•๋„๊ฐ€ ๊ฐœ์„ ๋˜์—ˆ๋‹ค[5]. ๋˜ํ•œ ๋ชจ์…˜ ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•  ๋•Œ ๊ทธ ํ•ด๊ฐ€ ์—†๊ฑฐ๋‚˜ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด ๊ฒฝ์šฐ ํ•ด์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค[6].

Optical flow์˜ ์ฒ˜๋ฆฌ ๊ณผ์ •์€ ์—ฐ์†๋œ ํ”„๋ ˆ์ž„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•˜์—ฌ ๋งŽ์€ ์—ฐ์‚ฐ ๋ฐ ์ €์žฅ ๊ณต๊ฐ„๊ณผ ํ”ฝ์…€ ๋‹จ์œ„์˜ ๋ฐ˜๋ณต์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ํ•„์š”๋กœ ํ•˜๋ฏ€๋กœ ์‹ค์‹œ๊ฐ„ ๋™์ž‘์„ ์œ„ํ•ด์„œ๋Š” ํšจ์œจ์ ์ธ ํ•˜๋“œ์›จ์–ด ์ ‘๊ทผ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ์‹ค์‹œ๊ฐ„์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•œ optical flow ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๊ณ ์„ฑ๋Šฅ ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ๋ฐ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์กฐ, ์ •ํ™•๋„ ์œ ์ง€๋ฅผ ์œ„ํ•œ ์ ์ ˆํ•œ ๋น„ํŠธํ• ๋‹น ๋ฐ ํ•˜๋“œ์›จ์–ด ๋ณต์žก๋„ ๋“ฑ์„ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค.

์ง€๊ธˆ๊นŒ์ง€ ์‹ค์‹œ๊ฐ„ optical flow ์‹œ์Šคํ…œ ์„ค๊ณ„์— ๋Œ€ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค[7-13]. Plyer ๋“ฑ์€ ๊ณ ์„ฑ๋Šฅ GPU๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค์ค‘ํ•ด์ƒ๋„๋ฅผ ์ง€์›ํ•˜๊ณ  ๊ณ ๋ฐ€๋„ ๋งต์„ ์ƒ์„ฑํ•˜๋Š” ๋Œ€์šฉ๋Ÿ‰ ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ๊ตฌ์กฐ์ธ eFOLKI ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค[7]. Ishii ๋“ฑ์€ ๊ฐ€๋ณ€ ํ”„๋ ˆ์ž„์˜ ์†๋„๋ฅผ ์ ์‘์ ์œผ๋กœ ์ œ์–ดํ•จ์œผ๋กœ์จ ๋‹ค์–‘ํ•œ ์†๋„์˜ ๋ฌผ์ฒด์— ๋Œ€ํ•ด ์›€์ง์ž„ ๋ฒกํ„ฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค[8]. ์ด ๋•Œ, ์ธก์ • ๊ฐ€๋Šฅํ•œ ์›€์ง์ž„ ๋ฒกํ„ฐ์˜ ์ƒํ•œ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๊ฐœ์„ ๋œ optical flow ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณ ์† ๋น„์ „ ํ”Œ๋žซํผ์—์„œ ํ•˜๋“œ์›จ์–ด ๋กœ์ง์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. Diaz ๋“ฑ์€ optical flow ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์Šˆํผ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆ ํ•˜์˜€์œผ๋ฉฐ, ์ด ์‹œ์Šคํ…œ์€ FPGA๋ฅผ ์ด์šฉํ•˜์—ฌ ํด๋Ÿญ ๋‹น 1ํ”ฝ์…€์˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” 70๊ฐœ ์ด์ƒ์˜ ๊ณ ์„ฑ๋Šฅ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค[9]. LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์˜์ƒ์ž…๋ ฅ ๋Œ€์‹  ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง์˜ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๊ณผ๋„ํ•œ ์™ธ๋ถ€ ํ”„๋ ˆ์ž„ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค[10]. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง๋œ ์˜์ƒ์„ ์ˆ˜ํ‰ ๋ฐ ์ˆ˜์ง ๋ฐฉํ–ฅ์—์„œ ๋‹ค์šด์ƒ˜ํ”Œ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ์œผ๋ฉฐ ์™ธ๋ถ€ ๋ฉ”๋ชจ๋ฆฌ ์•ก์„ธ์Šค๊ฐ€ ์›๋ž˜ ๋ฐ์ดํ„ฐ์˜ 1/4๋กœ ์ค„์–ด๋“ค์–ด ์ž์›ํšจ์œจ์ด ๊ฐœ์„ ๋˜์—ˆ๋‹ค. Mahalingam ๋“ฑ์€ ๋น„๊ต์  ์ •ํ™•ํ•œ ์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•œ ํšจ์œจ์ ์ธ VLSI ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค[11]. LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋จผ์ € ํ™•์žฅ๋œ ๊ณ ์ • ์†Œ์ˆ˜์  ๋ฒ„์ „์œผ๋กœ ๋ณ€ํ™˜๋˜๋ฉฐ, ์ •ํ™•์„ฑ์„ ๊ฒ€์ฆํ•œ ์ตœ์ ์˜ ๋น„ํŠธ ํญ์œผ๋กœ ๊ณ ์† ํ•˜๋“œ์›จ์–ด๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํŒŒ์ดํ”„๋ผ์ธ ๋ฐ ๋ณ‘๋ ฌ๊ตฌ์กฐ๋ฅผ ์ ์šฉํ•˜์—ฌ ํšจ์œจ์ ์ธ VLSI ์•„ํ‚คํ…์ฒ˜๋กœ ๋งคํ•‘๋˜์—ˆ๋‹ค. Barranco ๋“ฑ์€ FPGA ํ™˜๊ฒฝ์—์„œ ํฐ ๋ณ€์œ„๋ฅผ ๊ฐ–๋Š” ๋ฌผ์ฒด์˜ ๋™์ž‘ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ๋‹ค์ค‘ ์Šค์ผ€์ผ ํ™•์žฅ์„ ์ ์šฉํ•œ LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค[12]. ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์€ ์ •๊ตํ•œ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•˜์—ฌ ๋†’์€ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ๊ณผ ๋‚ฎ์€ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. Jang ๋“ฑ์€ ๋‹ค์ค‘ ํ–‰ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ „์—ญ์ ์ธ optical flow์— ๋Œ€ํ•œ VLSI ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค[13]. ์ œ์•ˆํ•œ ๊ตฌ์กฐ๋Š” ์˜์ƒ์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•˜์œ„ ์˜์ƒ์œผ๋กœ ๋‚˜๋ˆˆ ๋‹ค์Œ ๊ฐ ํ•˜์œ„ ์˜์ƒ์˜ ํ๋ฆ„์€ ์™ธ๋ถ€ ๋ฉ”๋ชจ๋ฆฌ์— ์ ‘๊ทผํ•˜์ง€ ์•Š๊ณ  ์†Œ๋Ÿ‰์˜ ๋‚ด๋ถ€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ˆœ์ฐจ์ ์œผ๋กœ ์ถ”์ •๋˜์–ด ํšจ์œจ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค.

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์‹ค์‹œ๊ฐ„ optical flow ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ํ•˜๋“œ์›จ์–ด ๋ณต์žก๋„ ๊ฐœ์„ ๊ณผ ํšจ์œจ์  ์„ค๊ณ„๋ฅผ ์œ„ํ•˜์—ฌ ์—๋Ÿฌ์œจ ๋ถ„์„์„ ํ†ตํ•œ ์ตœ์ ์˜ ๋น„ํŠธํ• ๋‹น์„ ์ง„ํ–‰ํ•˜์˜€๊ณ  ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž„๊ณ„๊ฒฝ๋กœ๋ฅผ ์ตœ์ ํ™”ํ•˜์˜€์œผ๋ฉฐ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ ๊ตฌ์กฐ, ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง ๋“ฑ์„ ํ†ตํ•˜์—ฌ ์ฒ˜๋ฆฌ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ตฌ์กฐ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์Šค๋ฌด๋”ฉ์„ ์ฒ˜๋ฆฌํ•˜๋Š” 5๊ฐœ์˜ ๋ณ‘๋ ฌ์—ฐ์‚ฐ ๋ชจ๋“ˆ๊ณผ ์‹œ๊ณต๊ฐ„์˜ ์„ธ ์ถ•(t,x,y) ๊ธฐ์šธ๊ธฐ ์ •๋ณด๋ฅผ ๋™์‹œ์— ์—ฐ์‚ฐํ•˜๋Š” 3๊ฐœ์˜ ๋ณ‘๋ ฌ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํŠน์„ฑ์ƒ ๊ธฐ์—ฐ์‚ฐ๋œ ์ค‘๊ฐ„ ์ปค๋„์˜ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์žฌ์‚ฌ์šฉ ๋นˆ๋„๊ฐ€ ๋†’๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์ตœ์†Œ์˜ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ด์šฉํ•œ ์ตœ์ ์˜ ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์„ ์ ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜์˜€์œผ๋ฉฐ ์ด๋กœ ์ธํ•˜์—ฌ ํ•„์š”ํ•œ ๊ณ„์‚ฐ๋Ÿ‰๊ณผ ๋ฉ”๋ชจ๋ฆฌ ๊ณต๊ฐ„์„ ์ค„์ด๊ณ  ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์„ ํ†ตํ•˜์—ฌ ํ•˜๋“œ์›จ์–ด ์„ฑ๋Šฅ์„ ๋†’์—ฌ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค.

๋ณธ ๋…ผ๋ฌธ์˜ 2์žฅ์—์„œ๋Š” LK optical flow ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  3์žฅ์—์„œ๋Š” ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ ๋ชจ๋“ˆ๋“ค์˜ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…ํ•œ๋‹ค. 4์žฅ์—์„œ๋Š” ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง ๋ฐฉ๋ฒ•๊ณผ ์ œ์•ˆํ•œ ๊ตฌ์กฐ์˜ ์„ค๊ณ„, ์„ฑ๋Šฅ ๋ฐ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ ๋“ฑ์„ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 5์žฅ์—์„œ๋Š” ๊ฒฐ๋ก ์„ ๋งบ๋Š”๋‹ค.

2. Lucas-Kanade Optical Flow Algorithm

Optical flow๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐ๊ธฐ ํ•ญ์ƒ์„ฑ๊ณผ ์ž‘์€ ์›€์ง์ž„์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ „์ œ ์กฐ๊ฑด์ด ํ•„์š”ํ•˜๋‹ค. ๋ฐ๊ธฐ ํ•ญ์ƒ์„ฑ์€ ์˜์ƒ ๋‚ด์˜ ํ”ฝ์…€์ด ์‹œ๊ฐ„ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋™์ผํ•œ ๋ฐ๊ธฐ๋ฅผ ์œ ์ง€ํ•œ๋‹ค๋Š” ๊ฐ€์ •์ด๋ฉฐ, ์ž‘์€ ์›€์ง์ž„์€ ์—ฐ์†๋œ ํ”„๋ ˆ์ž„ ๊ฐ„ ์›€์ง์ž„์ด ์ž‘์•„ ํŠน์ • ํ”ฝ์…€์€ ๋ฉ€๋ฆฌ ์›€์ง์ด์ง€ ์•Š์Œ์„ ๊ฐ€์ •ํ•œ๋‹ค[3]. ์ด๋ฅผ ์ˆ˜์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ์‹ (1)๊ณผ ๊ฐ™๋‹ค.

(1)
$f(x,\: y,\: t)= f(x+dx,\: y+dy,\: t +dt)$

์‹ (1)์— ํ…Œ์ผ๋Ÿฌ ๊ธ‰์ˆ˜๋ฅผ ์ ์šฉํ•˜์—ฌ 1์ฐจ ํ•ญ๊นŒ์ง€๋งŒ ๊ณ ๋ คํ•˜๋ฉด ์‹ (2)์™€ ๊ฐ™์ด ๊ฐ„๋žตํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

(2)
$f(x+dx,\: y+dy,\: t+dt)\approx f(x,\: y,\: t)+\dfrac{\partial f}{\partial x}dx+\dfrac{\partial f}{\partial y}dy+\dfrac{\partial f}{\partial t}dt$

์—ฌ๊ธฐ์„œ 2์ฐจ ์ด์ƒ์˜ ํ•ญ์€ ์ž‘์€ ์›€์ง์ž„ ์กฐ๊ฑด์— ์˜ํ•ด ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹ (1)์— ์˜ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(3)
$\dfrac{\partial f}{\partial x}dx+\dfrac{\partial f}{\partial y}dy+\dfrac{\partial f}{\partial t}dt=0$

์‹ (3)์˜ ์–‘๋ณ€์„ $dt$๋กœ ๋‚˜๋ˆ„๊ณ  ๋ช…ํ™•ํ•œ ์˜๋ฏธ๋ฅผ ์œ„ํ•˜์—ฌ ํ‘œ๊ธฐ๋ฅผ ๋‹ค๋ฅด๊ฒŒ ํ•˜๋ฉด ์‹ (4)๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ (4)๋ฅผ ๊ด‘ํ•™ํ๋ฆ„ ์ œ์•ฝ๋ฐฉ์ •์‹(optical flow constraint equation)์ด๋ผ๊ณ  ํ•˜๋ฉฐ $I_{x},\: I_{y}$๋Š” ๊ณต๊ฐ„์  ๊ธฐ์šธ๊ธฐ, $I_{t}$๋Š” ์‹œ๊ฐ„์  ๊ธฐ์šธ๊ธฐ, $u ,\: v$๋Š” ๋ชจ์…˜ ๋ฒกํ„ฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(4)
$I_{x}u+I_{y}v+I_{t}=0$

LK ๋ฐฉ์‹์˜ optical flow๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž‘์€ ์˜์—ญ(์œˆ๋„์šฐ) ๋‚ด์—์„œ ๋ชจ๋“  ํ”ฝ์…€์ด ๋™์ผํ•œ ์›€์ง์ž„์„ ๊ฐ€์ง„๋‹ค๋Š” ๊ฐ€์ •์„ ์ถ”๊ฐ€ํ•œ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์†Œ์ž์Šน๋ฒ•(least squares method)์„ ์ ์šฉํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜์—ฌ ๋ชจ์…˜ ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•˜๋ฉด ์‹ (5)์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(5)
$\sum_{i,\: j}W_{i,\: j}([I_{x_{i,\: j}}I_{y_{i,\: j}}]\begin{bmatrix}u\\v\end{bmatrix}+I_{t})^{2}$

์‹ (5)์—์„œ $W_{i,\: j}$๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ๊ฐ€์ค‘์น˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ ๊ฐ€์žฅ์ž๋ฆฌ์˜ ํ”ฝ์…€๋“ค๋ณด๋‹ค ์ค‘์‹ฌ์ ์˜ ํ”ฝ์…€์˜ ๊ธฐ์—ฌ๋„๋ฅผ ๋†’์—ฌ ์ฃผ๋ณ€ ํ”ฝ์…€์˜ ์˜ํ–ฅ์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  $I_{x_{i,\: j}},\: I_{y_{i,\: j}},\: I_{t_{i,\: j}}$์€ ํ•ด๋‹น ์œ„์น˜์˜ ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„ ๊ธฐ์šธ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์œ„์—์„œ ๋„์ถœํ•œ ์‹ (4)๋ฅผ ํ–‰๋ ฌ ์—ฐ์‚ฐ์œผ๋กœ ์ •๋ฆฌํ•˜๋ฉด ์‹ (6)๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(6)
$A\vec{v^{T}}=b,\: A=\begin{bmatrix}I_{x1}&I_{y1}\\I_{x2}&I_{y2}\\ ... & ... \\ I_{xn}& I_{yn}\end{bmatrix},\: b=\begin{bmatrix}-I_{t1}\\-I_{t2}\\ ... \\ -I_{tn}\end{bmatrix},\: \vec{v}=\begin{bmatrix}u& v\end{bmatrix}$

๊ฐ€์ค‘์น˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ตœ์†Œ ์ž์Šน๋ฒ•์œผ๋กœ ํ•ด๋ฅผ ๊ตฌํ•˜๋ฉด ์‹ (7)๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๊ณ , ์ตœ์ข… ํ•ด๋ฅผ ๊ตฌํ•˜๋ฉด ์‹ (9)๊ฐ€ ๋œ๋‹ค. ๋ฐฉ์ •์‹์˜ ๊ตฌ์„ฑ์š”์†Œ๋“ค์€ ์‹ (8)์— ํ‘œ์‹œํ•˜์˜€๋‹ค.

(7)
$\vec{v}^{T}=(A^{T}WA)^{-1}A^{T}W b$
(8)
$A^{T}WA=\begin{bmatrix}\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}^{2}&\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}I_{y_{i,\: j}}\\\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}I_{y_{i,\: j}}&\sum_{i,\: j}W_{i,\: j}I_{y_{i,\: j}}^{2}\end{bmatrix},\: A^{T}W b=\begin{bmatrix}-\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}I_{t_{i,\: j}}\\-\sum_{i,\: j}W_{i,\: j}I_{y_{i,\: j}}I_{t_{i,\: j}}\end{bmatrix}$
(9)
$\begin{bmatrix}u\\v\end{bmatrix}=\dfrac{1}{\det}\begin{bmatrix}-c&b\\b&-a\end{bmatrix}\begin{bmatrix}b_{0}\\b_{1}\end{bmatrix}$

์œ„์˜ ์‹์—์„œ $a=\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}^{2}$, $b=\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}I_{y_{i,\: j}}$, $c=\sum_{i,\: j}W_{i,\: j}I_{y_{i,\: j}}^{2}$, $b_{0}=\sum_{i,\: j}W_{i,\: j}I_{x_{i,\: j}}I_{t_{i,\: j}}$, $b_{1}=\sum_{i,\: j}W_{i,\: j}I_{y_{i,\: j}}I_{t_{i,\: j}}$, $\det = ac - b^{2}$ ์ด๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ณผ์ •์„ ํ†ตํ•ด LK ๊ธฐ๋ฐ˜ optical flow ์—ฐ์‚ฐ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค.

Optical flow ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์‹ (6)์„ ํ’€์–ด ์ˆœ๊ฐ„์ ์ธ ๋ชจ์…˜ ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•  ๋•Œ ๊ทธ ์‹œ์Šคํ…œ์ด ํ•ด๊ฐ€ ์—†๊ฑฐ๋‚˜ ํ•ด๊ฐ€ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ ๊ด‘ํ•™ ํ๋ฆ„์˜ ์‹ ๋ขฐ์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ง€ํ‘œ๋กœ ๊ณ ์œ  ์ž„๊ณ„๊ฐ’(eigenvalue threshold)๊ณผ ์ •๊ทœํ™” ์ž”์ฐจ ์ž„๊ณ„๊ฐ’(normalized residual threshold)๋ฅผ ์ด์šฉํ•œ๋‹ค.

(10)
$\lambda_{1}=\dfrac{(M_{xx}+M_{yy})+\sqrt{(M_{xx}-M_{yy})^{2}+4M_{xy}^{2}}}{2}$
(11)
$\lambda_{2}=\dfrac{(M_{xx}+M_{yy})-\sqrt{(M_{xx}-M_{yy})^{2}+4M_{xy}^{2}}}{2}$

์œ„ ์‹์—์„œ $\sum_{i,\: j}W_{i,\: j}I_{x_{i.j}}^{2}=M_{xx}$, $\sum_{i,\: j}W_{i,\: j}I_{y_{i.j}}^{2}=M_{yy}$, $\sum_{i,\: j}W_{i,\: j}I_{x_{i.j}}I_{y_{i,\: j}}=M_{xy}$๋กœ ํ‘œ๊ธฐํ•˜์˜€๋‹ค. ์‹ (10)๊ณผ (11)์€ ์‹ (8)์˜ $A^{T}WA$ ํ–‰๋ ฌ์˜ ๊ณ ์œ ๊ฐ’($\lambda_{1},\: \lambda_{2}$)์„ ๊ตฌํ•˜๋Š” ์‹์ด๋ฉฐ, ์‹ (8)์—์„œ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(12)
$\min(\lambda_{1},\: \lambda_{2})> T_{value}$
(13)
$\epsilon_{n}=\dfrac{\sum_{i,\: j}W_{i,\: j}(I_{x_{i,\: j}}u+I_{y_{i,\: j}}v+I_{t_{i,\: j}})^{2}}{M_{xx}+M_{yy}+M_{tt}}$

์œ„์˜ ์‹ (12)๋ฅผ ๋งŒ์กฑํ•˜๋ฉด ํ•ด๋‹น ์œˆ๋„์šฐ์˜ optical flow ๊ฒฐ๊ณผ๊ฐ€ ๋งž๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ $T_{value}$๋Š” ์‹ ๋ขฐ์„ฑ์„ ํŒ๋‹จํ•˜๋Š” ๊ณ ์œ ๊ฐ’ ์ž„๊ณ„์น˜๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๋˜ ๋‹ค๋ฅธ ์‹ ๋ขฐ์„ฑ ํ‰๊ฐ€ ์ง€ํ‘œ์ธ ์ •๊ทœ ์ž”์ฐจ ์ž„๊ณ„๊ฐ’($\epsilon_{n}$)์€ ์‹ (13)๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ฃผ์–ด์ง„ ์ž”์ฐจ ์ž„๊ณ„๊ฐ’($\epsilon$)๋ณด๋‹ค ์ž‘์œผ๋ฉด ์‹ ๋ขฐ์„ฑ์„ ๋ณด์žฅํ•œ๋‹ค.

3. ์ œ์•ˆํ•œ Lucas-Kanade ๊ธฐ๋ฐ˜์˜ Optical Flow ์‹œ์Šคํ…œ

LK ๊ธฐ๋ฐ˜์˜ optical flow ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์ด๋ฏธ์ง€์˜ ๋ชจ๋“  ํ”ฝ์…€์— ๋Œ€ํ•ด ๋‹ค์–‘ํ•œ ์ปค๋„ ์—ฐ์‚ฐ๊ณผ ํ–‰๋ ฌ ๊ณ„์‚ฐ, ์‹ ๋ขฐ์„ฑ ํ…Œ์ŠคํŠธ ๋“ฑ์„ ์ง„ํ–‰ํ•  ๋•Œ ํ•˜๋“œ์›จ์–ด ๋ณต์žก๋„์™€ ๋งŽ์€ ์ฒ˜๋ฆฌ์‹œ๊ฐ„์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์€ ์ค‘๊ฐ„ ์ปค๋„ ๊ฒฐ๊ณผ๋ฅผ ์ตœ์†Œ ํฌ๊ธฐ์˜ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•œ ํ›„ ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง ๊ทœ์น™์— ๋”ฐ๋ผ ์ปค๋„ ์—ฐ์‚ฐ์„ ์ง„ํ–‰ํ•˜์—ฌ ํ•˜๋“œ์›จ์–ด ๋ณต์žก๋„์™€ ์ฒ˜๋ฆฌ์‹œ๊ฐ„์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 1. ์ „์ฒด ์‹œ์Šคํ…œ ๊ตฌ์กฐ

Fig. 1. Overall system architecture

../../Resources/kiee/KIEE.2025.74.9.1591/fig1.png

๊ทธ๋ฆผ 1์€ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์˜ ์ „์ฒด ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ „์ฒด ์‹œ์Šคํ…œ์€ ์žก์Œ์„ ์ œ๊ฑฐํ•œ ๋ถ€๋“œ๋Ÿฌ์šด ์ „์ฒ˜๋ฆฌ ์˜์ƒ์„ ์ƒ์„ฑํ•˜๋Š” GS(Gaussian Smoothing), ์‹œ๊ฐ„ ๋ฐ ๊ณต๊ฐ„ ์ถ•์—์„œ ๋ฌผ์ฒด ์›€์ง์ž„์˜ ๊ธฐ์šธ๊ธฐ ์„ฑ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋Š” GU(Gradient Unit), ๊ฐ€์ค‘์น˜ ํ•ฉ์„ ํ†ตํ•ด ๊ฐ ํ”ฝ์…€์˜ ์„ ํ˜• ๋ฐฉ์ •์‹ ๊ณ„์ˆ˜๋ฅผ ๊ตฌํ•˜๋Š” Weighted Sum, ๋ฒกํ„ฐ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ์„ ๊ฒ€์ฆํ•˜๋Š” ES(Equation Solver), Validation, Residual ๋ชจ๋“ˆ ๋“ฑ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์—ฐ์†๋œ 9์žฅ ํ”„๋ ˆ์ž„๋“ค๋กœ๋ถ€ํ„ฐ gray scale ํ™”์†Œ ๊ฐ’๋“ค์ด ์ž…๋ ฅ๋˜๋ฉฐ ์ด ๊ฐ’์„ ์ด์šฉํ•˜์—ฌ ์ตœ์ข… (u,v) ๊ฐ’์€ ํ”„๋ ˆ์ž„ ํ•˜๋‚˜์˜ ์›€์ง์ž„ ์ด๋Ÿ‰์ด ๋‚˜์˜ฌ ๋•Œ๊นŒ์ง€ ๋ˆ„์ ํ•œ๋‹ค. ์ด ๋•Œ, ๊ฐ ๋ชจ๋“ˆ์—์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ์ค€๋น„๋˜๋Š” ์ฆ‰์‹œ ๋‹ค์Œ ๋ชจ๋“ˆ๋กœ ์ „๋‹ฌ๋˜์–ด ์—ฐ์‚ฐ์ด ์—ฐ์†์ ์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ์‹œ๊ฐ„ ๋ฐฉํ–ฅ์˜ ๊ธฐ์šธ๊ธฐ๋ฅผ ๊ตฌํ•˜๋Š” GU_T ๋ชจ๋“ˆ์˜ ์ž…๋ ฅ์„ ์œ„ํ•˜์—ฌ 5๊ฐœ์˜ GS ๋ธ”๋ก์ด ํ•„์š”ํ•˜๋ฉฐ ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์—ฐ์†๋œ 9 ํ”„๋ ˆ์ž„๋“ค์˜ ํ”ฝ์…€ ๋ฐ์ดํ„ฐ๊ฐ€ 5๊ฐœ์˜ GS ๋ชจ๋“ˆ๋“ค์— ๋ณ‘๋ ฌ๋กœ ์ž…๋ ฅ๋œ๋‹ค. ์ฆ‰, GS1, GS2, GS3, GS4, GS5 ๋ชจ๋“ˆ์— ๊ฐ๊ฐ 0-4, 1-5, 2-6, 3-7, 4-8 ํ”„๋ ˆ์ž„๋“ค์˜ ํ”ฝ์…€ ๋ฐ์ดํ„ฐ๊ฐ€ ์ž…๋ ฅ๋œ๋‹ค. ๊ฐ ๋ธ”๋ก์—์„œ t์ถ•, x์ถ•, y์ถ• ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฑฐ์น˜๋ฉฐ ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง์ด ์ ์šฉ๋œ ํ”ฝ์…€ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ๊ทธ๋ฆผ์—์„œ ๋น—๊ธˆ ์นœ ์ž‘์€ ๋ธ”๋ก์€ ํƒ€์ด๋ฐ์„ ๋งž์ถ”๊ธฐ ์œ„ํ•œ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์„  ์œ„์˜ ์ˆซ์ž๋Š” ํ•ด๋‹น ์‹ ํ˜ธ์— ํ• ๋‹น๋œ ๋น„ํŠธ ์ˆ˜๋ฅผ ํ‘œ์‹œํ•˜๊ณ  ์ •์ˆ˜๋ถ€์™€ ์†Œ์ˆ˜๋ถ€๋ฅผ ํฌํ•จํ•œ๋‹ค.

๊ทธ๋ฆผ 2. GS ๋ชจ๋“ˆ์˜ ๊ตฌ์กฐ

Fig. 2. Structure of GS module

../../Resources/kiee/KIEE.2025.74.9.1591/fig2.png

๊ทธ๋ฆผ 2๋Š” GS ๋ชจ๋“ˆ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ 5๊ฐœ์˜ ์—ฐ์†๋œ ํ”„๋ ˆ์ž„์—์„œ ๋™์ผํ•œ ์ขŒํ‘œ์˜ ํ”ฝ์…€ ๋ฐ์ดํ„ฐ 5๊ฐœ๋ฅผ t์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ€์šฐ์‹œ์•ˆ ์Šค๋ฌด๋”ฉํ•œ๋‹ค. ์ขŒ์ธก ์ƒ๋‹จ๋ถ€ํ„ฐ ํ–‰ ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ–‰๋œ t์ถ• ๊ฐ€์šฐ์‹œ์•ˆ ์ปค๋„ ์ถœ๋ ฅ์€ x์ถ• ์Šค๋ฌด๋”ฉ์„ ์œ„ํ•˜์—ฌ ์ˆœ์ฐจ์ ์œผ๋กœ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ์— ์ €์žฅ๋˜์–ด ๋งค ์‚ฌ์ดํด๋งˆ๋‹ค x์ถ• ๊ฐ€์šฐ์‹œ์•ˆ ์ถœ๋ ฅ์ด ์ƒ์„ฑ๋œ๋‹ค. ์ตœ์ข… y์ถ• ์ถœ๋ ฅ์„ ์œ„ํ•ด์„œ๋Š” ์—ด ๋ฐฉํ–ฅ์œผ๋กœ 5๊ฐœ์˜ x์ถ• ์ถœ๋ ฅ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ด๋Š” ํ”ฝ์…€ ๋ฐ์ดํ„ฐ์˜ ์ง„ํ–‰ ๋ฐฉํ–ฅ๊ณผ ์ง๊ตํ•œ๋‹ค. ์•ž์„œ ๋งŒ๋“ค์–ด์ง„ x์ถ• ๊ฐ€์šฐ์‹œ์•ˆ ๊ฒฐ๊ณผ๋Š” ์ดํ›„ y์ถ• ์ปค๋„ ๊ณ„์‚ฐ์—์„œ ์‚ฌ์šฉ๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ ์ด์ „ 4๊ฐœ ํ–‰์˜ x์ถ• ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ €์žฅ๋œ 4๊ฐœ์˜ x์ถ• ์ถœ๋ ฅ๊ณผ ์ƒˆ๋กœ ์ž…๋ ฅ๋˜๋Š” x์ถ• ์ถœ๋ ฅ์„ ์ปค๋„ ์—ฐ์‚ฐํ•˜์—ฌ y์ถ• ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•œ๋‹ค. ๋ฉ”๋ชจ๋ฆฌ์— x์ถ• ์ถœ๋ ฅ ๊ฒฐ๊ณผ๊ฐ€ ๋ชจ๋‘ ์ €์žฅ๋˜๊ธฐ๊นŒ์ง€ y์ถ• ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ ์—ฐ์‚ฐ์€ ํœด์‹ํ•˜์ง€๋งŒ, ์ดํ›„์—๋Š” ๋งค ์‚ฌ์ดํด๋งˆ๋‹ค y์ถ• ์ถœ๋ ฅ์ด ์ƒ์„ฑ๋œ๋‹ค. GS ๋ชจ๋“ˆ์—์„œ ๊ฐ ์ถ•๋งˆ๋‹ค ๋™์ผํ•œ ์ปค๋„ [$\dfrac{1}{16},\: \dfrac{4}{16},\: \dfrac{6}{16},\: \dfrac{4}{16},\: \dfrac{1}{16}$]์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

GS ๋ชจ๋“ˆ์˜ ๋ฉ”๋ชจ๋ฆฌ๋Š” x์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๊ณ„์‚ฐ๋œ ์ถœ๋ ฅ์„ ์ €์žฅํ•˜๊ณ , ์ดํ›„ y์ถ• ์ปค๋„ ์—ฐ์‚ฐ ์‹œ ํ•„์š”ํ•œ x์ถ• ์ถœ๋ ฅ์„ ๊ณต๊ธ‰ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์ด ๋•Œ ๊ทธ๋ฆผ 2์—์„œ์™€ ๊ฐ™์ด ๊ฐ ํ–‰์— ๋Œ€ํ•ด meme์™€ memo๋กœ ๊ตฌ์„ฑ๋œ ์ด 8๊ฐœ์˜ ๋ฉ”๋ชจ๋ฆฌ ๋ธ”๋ก์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ฝ๊ธฐ/์“ฐ๊ธฐ๊ฐ€ ๋™์‹œ์— ์ˆ˜ํ–‰๋˜์–ด ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ y์ถ• ์ปค๋„ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ๋•Œ๋Š” ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅ๋œ 4๊ฐœ ํ–‰์˜ x์ถ• ์ถœ๋ ฅ๊ณผ ์ƒˆ๋กญ๊ฒŒ ๊ณ„์‚ฐ๋œ x์ถ• ์ถœ๋ ฅ์„ ํ•จ๊ป˜ ํ™œ์šฉํ•˜์—ฌ y์ถ• ๋ฐฉํ–ฅ์˜ ์Šค๋ฌด๋”ฉ ์—ฐ์‚ฐ์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ƒˆ๋กญ๊ฒŒ ๊ณ„์‚ฐ๋œ x์ถ• ์ถœ๋ ฅ์€ ๋‹ค์Œ ํด๋Ÿญ์— ๋” ์ด์ƒ ์‚ฌ์šฉ๋˜์ง€ ์•Š๋Š” x์ถ• ์ถœ๋ ฅ์ด ์ €์žฅ๋˜์–ด ์žˆ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๊ณต๊ฐ„์— ์—…๋ฐ์ดํŠธ ๋œ๋‹ค. meme์—๋Š” ๊ฐ ํ–‰์˜ ์ง์ˆ˜ ๋ฒˆ์งธ x์ถ• ์ถœ๋ ฅ์ด ์ €์žฅ๋˜๊ณ  memo์—๋Š” ํ™€์ˆ˜ ๋ฒˆ์งธ x์ถ• ์ถœ๋ ฅ์ด ์ €์žฅ๋œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ ํ–‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ meme๊ณผ memo์— ๋ฒˆ๊ฐˆ์•„ ๊ฐ€๋ฉฐ ์ €์žฅํ•œ๋‹ค. GS ๋ชจ๋“ˆ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ 4๊ฐœ ํ–‰์˜ x์ถ• ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋กœ ๋ชจ๋‘ ์ฑ„์›Œ์ง€๋ฉด, ๊ฐ ํ–‰์˜ meme, memo์— ์ €์žฅ๋œ ๊ฐ’์ด ์ˆœ์ฐจ์ ์œผ๋กœ ์ถœ๋ ฅ๋˜๊ธฐ ์‹œ์ž‘ํ•œ๋‹ค.

๊ทธ๋ฆผ 3. GS ๋ชจ๋“ˆ ๋ฉ”๋ชจ๋ฆฌ์˜ ํƒ€์ด๋ฐ๋„

Fig. 3. Timing diagram of memories in GS module

../../Resources/kiee/KIEE.2025.74.9.1591/fig3.png

๊ทธ๋ฆผ 3์€ GS ๋ชจ๋“ˆ ๋ฉ”๋ชจ๋ฆฌ์˜ ํƒ€์ด๋ฐ๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋จผ์ € meme0,1,2,3 4๊ฐœ ๋ชจ๋“ˆ์˜ 0๋ฒˆ์ง€์— ๊ธฐ์ €์žฅ๋œ ์ขŒํ‘œ (0,i-2), (0,i-1), (0,i), (0,i+1) 4๊ฐœ ํ–‰์˜ x์ถ• ์ปค๋„ ๊ฐ’์„ ์ฝ๊ณ  ์ƒˆ๋กœ ์ž…๋ ฅ๋˜๋Š” ์ขŒํ‘œ (0,i+2)์˜ x์ถ• ์ถœ๋ ฅ๊ณผ ์ปค๋„ ์—ฐ์‚ฐํ•˜์—ฌ ์ขŒํ‘œ (0,i)์˜ y์ถ• ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•œ๋‹ค. ๋™์‹œ์— ์ƒˆ๋กœ ์ž…๋ ฅ๋œ ์ขŒํ‘œ (0,i+2)์˜ x์ถ• ์ถœ๋ ฅ์€ reg์— ์ž„์‹œ ์ €์žฅ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ y์ถ• ์ถœ๋ ฅ์ด ์ƒ์„ฑ๋˜๋ฉด meme0์˜ 0๋ฒˆ์ง€์— ์ €์žฅ๋œ ์ขŒํ‘œ (0,i-2)์˜ x์ถ• ์ถœ๋ ฅ์€ ๋” ์ด์ƒ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ reg์— ์ €์žฅ๋œ ์ขŒํ‘œ (0,i+2)์˜ x์ถ• ์ถœ๋ ฅ์€ meme0์˜ 0๋ฒˆ์ง€์— ์—…๋ฐ์ดํŠธ ๋œ๋‹ค. ๋‹ค์Œ ํด๋ก์—์„œ๋„ memo0,1,2,3์˜ 0๋ฒˆ์ง€์— ์ €์žฅ๋œ ์ขŒํ‘œ (1,i-2), (1,i-1), (1,i), (1,i+1) 4๊ฐœ ํ–‰์˜ x์ถ• ์ถœ๋ ฅ์„ ์ฝ๊ณ  ์ƒˆ๋กœ ์ž…๋ ฅ๋˜๋Š” ์ขŒํ‘œ (1,i+2)์˜ x์ถ• ์ถœ๋ ฅ๊ณผ ์ปค๋„ ์—ฐ์‚ฐํ•˜์—ฌ ์ขŒํ‘œ (1,i)์˜ y์ถ• ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋ฉฐ, ๊ทธ ๋‹ค์Œ ํด๋ก์— reg์— ์ €์žฅ๋œ (1,i+2)์˜ x์ถ• ์ถœ๋ ฅ์„ memo0์˜ 0๋ฒˆ์ง€์— ์—…๋ฐ์ดํŠธํ•œ๋‹ค. ์ด์™€ ๊ฐ™์ด meme์™€ memo์— ๋ฐ์ดํ„ฐ๋ฅผ ๋ฒˆ๊ฐˆ์•„ ์—…๋ฐ์ดํŠธํ•˜๋ฉฐ y์ถ• ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•œ๋‹ค. ๋˜ํ•œ, y์ถ• ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋Š” ํ–‰์ด ๋ณ€๊ฒฝ๋จ์— ๋”ฐ๋ผ ์—…๋ฐ์ดํŠธ๋˜๋Š” ๋ฉ”๋ชจ๋ฆฌ๋Š” meme/o0โ†’meme/o1โ†’meme/o2โ†’meme/o3โ†’meme/o0 ์ˆœ์„œ๋กœ ์ˆœํ™˜ํ•œ๋‹ค.

์œ„์—์„œ ์„ค๋ช…ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ๋งค ํ–‰๋งˆ๋‹ค ์ƒˆ๋กญ๊ฒŒ ์—…๋ฐ์ดํŠธ๋˜๋Š” x์ถ• ๊ฒฐ๊ณผ์˜ ์ €์žฅ ์œ„์น˜๊ฐ€ ๋‹ฌ๋ผ์ง€๋ฏ€๋กœ ์ด์— ๋”ฐ๋ผ y์ถ• ์ปค๋„๋กœ ์ž…๋ ฅ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ์ˆœ์„œ๋„ ์ ์ ˆํžˆ ์กฐ์ •๋˜์–ด์•ผ ํ•˜๋ฉฐ ์ด๋Š” order_gs ๋ชจ๋“ˆ์—์„œ ์ฒ˜๋ฆฌํ•œ๋‹ค. ์ฒ˜์Œ ์ฒ˜๋ฆฌ๋˜๋Š” ํ–‰์˜ ์ปค๋„ ์—ฐ์‚ฐ์—์„œ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ meme/o0,1,2,3 ์ˆœ์„œ๋กœ ์‚ฌ์šฉ๋  ๊ฒฝ์šฐ ์ปค๋„ ์—ฐ์‚ฐ๊ณผ ๋™์‹œ์— 0๋ฒˆ์งธ ๋ฉ”๋ชจ๋ฆฌ์— ์ƒˆ๋กœ์šด x์ถ• ์ถœ๋ ฅ์ด ์—…๋ฐ์ดํŠธ๋˜๋ฏ€๋กœ, ๋‹ค์Œ ํ–‰์˜ ์—ฐ์‚ฐ์—์„œ๋Š” meme/o1,2,3,0 ์ˆœ์„œ๋กœ ๋ณ€๊ฒฝ๋œ๋‹ค. ์ดํ›„ meme/o2,3,0,1โ†’meme/o3,0,1,2โ†’meme/o0,1,2,3 ์ˆœ์„œ๋กœ ์ˆœํ™˜ํ•˜๋ฉฐ, ์ด ๊ณผ์ •์ด ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค.

๊ทธ๋ฆผ 4. 6:2 compressor ๊ตฌ์กฐ

Fig. 4. Structure of 6:2 compressor

../../Resources/kiee/KIEE.2025.74.9.1591/fig4.png

๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง ์—ฐ์‚ฐ์—์„œ 6๊ฐœ์˜ ๋ง์…ˆ์„ ๋™์‹œ์— ์—ฐ์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” 6:2 compressor์™€ CPA(carry propagation adder)๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค[14]. ๊ทธ๋ฆผ 4๋Š” 6:2 compressor ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์œผ๋กœ 6๊ฐœ์˜ ์ž…๋ ฅ์„ ๋”ํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ€์‚ฐ๊ธฐ์˜ ํ•œ ๋น„ํŠธ์—ด์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ž…๋ ฅ์€ ํ•ด๋‹น ๋น„ํŠธ์˜ ์ž…๋ ฅ๊ฐ’(i0~i5) 6๊ฐœ์™€ ์•„๋žซ ๋‹จ์—์„œ ์˜ค๋Š” ๊ฐ’(ci0 ~ci2)์ด๋ฉฐ ์ถœ๋ ฅ์€ ์œ— ๋‹จ์œผ๋กœ ์ „๋‹ฌ๋˜๋Š” ๊ฐ’(co0~CO2)๊ณผ carry์™€ sum์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋‹ค.

๊ทธ๋ฆผ 5. GU ๋ชจ๋“ˆ๊ณผ kernel comp ๋ชจ๋“ˆ์˜ ๊ตฌ์กฐ

Fig. 5. Structure of GU module and kernel comp module

../../Resources/kiee/KIEE.2025.74.9.1591/fig5.png

๊ทธ๋ฆผ 5๋Š” GU ๋ชจ๋“ˆ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์˜ค๋ฅธ์ชฝ์˜ kernel comp ๋ธ”๋ก์€ ์™ผ์ชฝ ๋ธ”๋ก๋„์˜ kernel comp ๋ชจ๋“ˆ์˜ ๋‚ด๋ถ€ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์œ„ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„ ๋ฐ ๊ณต๊ฐ„ ์ถ•(t์ถ•, x์ถ•, y์ถ•)์—์„œ ๋ฌผ์ฒด์˜ ์›€์ง์ž„ ๊ธฐ์šธ๊ธฐ ์ •๋ณด๊ฐ€ ๋™์‹œ์— ์ถœ๋ ฅ๋œ๋‹ค. meme/oy์˜ ์ฝ๊ธฐ, ์“ฐ๊ธฐ ๋ฐ ์—…๋ฐ์ดํŠธ ๋ฐฉ์‹์€ GS ๋ชจ๋“ˆ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋™์ž‘ ๋ฐฉ์‹๊ณผ ๋™์ผํ•˜๋ฉฐ, meme/ot, meme/ox ๋˜ํ•œ ์œ ์‚ฌํ•œ ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•˜์ง€๋งŒ, 4๊ฐœ ํ–‰์ด ์•„๋‹Œ 2๊ฐœ ํ–‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๊ณ  ์—…๋ฐ์ดํŠธํ•œ๋‹ค. 5๊ฐœ์˜ ์—ฐ์†๋œ ํ”„๋ ˆ์ž„์—์„œ ์ž…๋ ฅ๋œ GS ์ถœ๋ ฅ์€ ์ขŒ์ธก ์ƒ๋‹จ๋ถ€ํ„ฐ ํ–‰ ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ–‰ํ•˜๋ฉฐ, t์ถ• ์ปค๋„ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ ํ›„ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅ๋œ๋‹ค. ๊ธฐ์šธ๊ธฐ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋Š” ํ–‰์ด ๋ณ€๊ฒฝ๋  ๋•Œ๋งˆ๋‹ค ๋ชจ๋“ˆ order_t๋Š” meme/ot0, meme/ot1์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฒˆ๊ฐˆ์•„ ์ถœ๋ ฅํ•œ๋‹ค. GU ์ปค๋„[$\dfrac{1}{12},\: -\dfrac{8}{12},\: 0 ,\: \dfrac{8}{12},\: -\dfrac{1}{12}$]์—์„œ ์ค‘์•™ ์ปค๋„ ๊ฐ’์ด 0์ด๋ฏ€๋กœ ํ•ด๋‹น ์ž…๋ ฅ์€ ๋ธ”๋ก๋„์—์„œ ์ œ์™ธํ•˜์˜€๋‹ค.

๊ฐ€์šด๋ฐ ํ”„๋ ˆ์ž„์˜ GS ์ถœ๋ ฅ์€ 5๊ฐœ์˜ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ๋ฅผ ํ†ตํ•ด x์ถ• ์ปค๋„ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ ํ›„ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅ๋œ๋‹ค. ๋ชจ๋“ˆ order_x๋Š” ๋ชจ๋“ˆ order_t์™€ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค. ๋˜ํ•œ ๊ฐ€์šด๋ฐ ํ”„๋ ˆ์ž„์—์„œ ์—ฐ์†๋œ 4๊ฐœ ํ–‰์˜ GS ์ถœ๋ ฅ์„ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜๋ฉฐ ๋ชจ๋“ˆ order_y์— ๋”ฐ๋ผ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ฝ๋Š” ์ˆœ์„œ๋ฅผ ์กฐ์ •ํ•˜๊ณ  ์ด์— ๋งž์ถฐ y์ถ• ์ปค๋„ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋ชจ๋“ˆ order_y๋Š” ๋ชจ๋“ˆ order_gs์™€ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค.

๊ทธ๋ฆผ 6. Weighted Sum ๋ชจ๋“ˆ์˜ ๊ตฌ์กฐ

Fig. 6. Structure of Weighted Sum module

../../Resources/kiee/KIEE.2025.74.9.1591/fig6.png

๊ทธ๋ฆผ 6์€ Weighted Sum(WS) ๋ชจ๋“ˆ์˜ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ sumIxIx๋ฅผ ์˜ˆ์‹œ๋กœ ๊ตฌ์กฐ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. 5โจฏ5 ์œˆ๋„์šฐ๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— 5๊ฐœ์˜ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ๋ฅผ ํ†ตํ•ด gu_x ๊ฐ’ 5๊ฐœ๋ฅผ ์—ฐ์†์œผ๋กœ ๋ฐ›์€ ํ›„ ์ œ๊ณฑํ•œ ๊ฐ’์— ๋Œ€ํ•ด ๊ฐ๊ฐ ๊ฐ€์ค‘์น˜๋ฅผ ๊ณฑํ•ด์ค€๋‹ค. gu_x ๊ฐ’์€ scan-order ๋ฐฉ์‹์œผ๋กœ ์ž…๋ ฅ๋˜๋ฉฐ, ํ–‰ ๋ฐฉํ–ฅ์œผ๋กœ gu_x ๊ฐ’์ด ์ž…๋ ฅ๋˜๋ฉด 5๊ฐœ ๋‹จ์œ„๋กœ ๊ฐ’๋“ค์ด ๋ˆ„์ ๋˜๊ณ  ์ด $โŒŠ ํ–‰ ๊ธธ์ด/5 โŒ‹$ ๊ฐœ์˜ ์ค‘๊ฐ„ ํ•ฉ๋“ค์ด ๊ณ„์‚ฐ๋˜๋ฉฐ ์ด ์ค‘๊ฐ„ ๊ฐ’๋“ค์€ ๋ฉ”๋ชจ๋ฆฌ์˜ ํ•ด๋‹น์œ„์น˜์— ์ €์žฅ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์ด ๋ฐ˜๋ณต๋˜์–ด 5๋ฒˆ์งธ ํ–‰๊นŒ์ง€ ๋ธ”๋ก ๋‹จ์œ„๋กœ ๋ˆ„์ ๋˜๋ฉด 5โจฏ5 ๋ˆ„์ ์—ฐ์‚ฐ์ด ์™„๋ฃŒ๋œ๋‹ค. ๋˜ํ•œ ์œˆ๋„์šฐ ๋‚ด์˜ 5๊ฐœ ํ–‰ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ณฑํ•˜๊ธฐ ์œ„ํ•ด 5:1 mux๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๊ฐ ํ–‰์˜ ๊ฐ€์ค‘์น˜ ๊ณฑ์€ ๊ฐ„๋‹จํ•œ ์‰ฌํ”„ํŠธ ์—ฐ์‚ฐ์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์ด 25๊ฐœ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๊ณฑํ•œ ๊ฐ’๋“ค์˜ ํ•ฉ์ด ์ตœ์ข…์ ์ธ sumIxIx๊ฐ€ ๋˜๊ณ  sumIxIy, sumIyIy ๋“ฑ ๋‚˜๋จธ์ง€ ๊ฐ’๋“ค๋„ ์ด์™€ ์œ ์‚ฌํ•œ ๋ฐฉ์‹์œผ๋กœ ๊ณ„์‚ฐ๋œ๋‹ค.

๊ทธ๋ฆผ 7์€ Residual ๋ชจ๋“ˆ์˜ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 6์˜ ๊ตฌ์กฐ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ t์ถ•, x์ถ•, y์ถ• ๋ฐฉํ–ฅ์˜ ๊ธฐ์šธ๊ธฐ ๊ฐ’์„ ์˜ค๋ฅธ์ชฝ ์ปค๋„ ๋‚ด๋ถ€ ๊ตฌ์กฐ์™€ ๊ฐ™์ด ๊ฐ๊ฐ 5๊ฐœ์˜ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ์— ์ €์žฅํ•˜๊ณ  ์œˆ๋„์šฐ ๋‚ด์˜ 25๊ฐœ์˜ ๊ธฐ์šธ๊ธฐ ๊ฐ’์— ๋Œ€ํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ๊ณฑํ•œ ํ›„ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ํ†ตํ•ด ๊ฒฐ๊ณผ ๊ฐ’์ด ๋‚˜์˜ค๊ฒŒ ๋œ๋‹ค. ์—ฌ๊ธฐ์„œ ๋‚˜์˜จ ๊ฒฐ๊ณผ ๊ฐ’๋“ค๊ณผ WS ๋ชจ๋“ˆ์—์„œ ๋‚˜์˜จ sumIxIx, sumIyIy, sumItIt์˜ ํ•ฉ์— ๋Œ€ํ•ด ๋‚˜๋ˆ—์…ˆ ์—ฐ์‚ฐ์„ ์ง„ํ–‰ํ•œ๋‹ค. ๋‚˜๋ˆ—์…ˆ์„ ํ†ตํ•ด ๋‚˜์˜จ ์ตœ์ข… ๊ฒฐ๊ณผ๋Š” Residual ๋ธ”๋ก ๋‚ด์˜ ํŒŒ๋ผ๋ฏธํ„ฐ $\epsilon$์™€์˜ ๋Œ€์†Œ ๋น„๊ต๋ฅผ ํ†ตํ•ด (u,v)์˜ ์„ ๋ณ„ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ทธ๋ฆผ 7์—์„œ ์‚ฌ์šฉ๋œ 9๊ฐœ์˜ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ๋Š” ํŒŒ์ดํ”„๋ผ์ธ ๋‚˜๋ˆ—์…ˆ๊ธฐ๋กœ ์ธํ•œ ํƒ€์ด๋ฐ์„ ๋งž์ถฐ์ฃผ๊ธฐ ์œ„ํ•œ ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ์ด๋‹ค.

๊ทธ๋ฆผ 7. Residual ๋ชจ๋“ˆ์˜ ๊ตฌ์กฐ

Fig. 7. Structure of Residual module

../../Resources/kiee/KIEE.2025.74.9.1591/fig7.png

4. ์„ฑ๋Šฅ ๋ถ„์„

4.1 ํšจ์œจ์  ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง

์˜์ƒ ๋ฐ์ดํ„ฐ ์ž…๋ ฅ์œผ๋กœ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ์‚ฐํ•˜๋Š” optical flow์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํŠน์„ฑ์ƒ ํ•œ ์žฅ์˜ ์›€์ง์ž„ ๋ฒกํ„ฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•˜์—ฌ ๋งŽ์€ ์ฒ˜๋ฆฌ์‹œ๊ฐ„๊ณผ ์—ฐ์‚ฐ๊ณผ์ •์ด ํ•„์š”ํ•˜๋‹ค. ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ ํ›„ํ–‰๋˜๋Š” ์„œ๋ธŒ ๋ธ”๋ก์˜ ์—ฐ์‚ฐ์„ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๋น ๋ฅธ ์‹œ๊ฐ„์— ์—ฐ์‚ฐ์„ ์‹œ์ž‘ํ•˜๋Š” ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์„ ์ ์šฉํ•จ์œผ๋กœ์จ ํšจ์œจ์ ์ธ ์—ฐ์‚ฐ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋กœ์จ ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋ ˆ์ž„ ํฌ๊ธฐ์˜ ์ €์žฅ ๊ณต๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ  ์ˆœ์ฐจ์  ์—ฐ์‚ฐ์œผ๋กœ ์ธํ•œ ์„ฑ๋Šฅ์ €ํ•˜๋„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด GS, GU, WS, (u,v) ๋ฒกํ„ฐ์˜ ๊ณ„์‚ฐ๊ณผ ๊ฒ€์ฆ(ES, Residual, Validation)์˜ 4๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ํ–‰ ๊ธธ์ด ๋ฉ”๋ชจ๋ฆฌ์˜ ๋„์ž…์„ ํ†ตํ•ด ์—ฐ์‚ฐ ์‹œ๊ฐ„์„ ์ค‘์ฒฉ์‹œ์ผœ ์ „์ฒด ์ฒ˜๋ฆฌ ์‹œ๊ฐ„์„ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๊ตฌ์กฐ์—์„œ๋Š” ๊ฐ ๋‹จ๊ณ„์—์„œ ์ž…๋ ฅ์ด ๋“ค์–ด์˜จ ํ›„ ์•ฝ 4.7ฮผs ํ›„์— ์ฒซ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋ฉฐ, ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋Š” ์ฆ‰์‹œ ๋‹ค์Œ ๋‹จ๊ณ„๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์œผ๋กœ ๊ฐ ๋‹จ๊ณ„๋งˆ๋‹ค ํœด์‹ ๊ตฌ๊ฐ„์„ ์ค„์—ฌ ์ „์ฒด ์ฒ˜๋ฆฌ ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 8. ์ค‘์ฒฉ์— ์˜ํ•œ ์Šค์ผ€์ค„๋ง ๋ถ„์„

Fig. 8. Scheduling analysis by time overlap

../../Resources/kiee/KIEE.2025.74.9.1591/fig8.png

๊ทธ๋ฆผ 8์€ Yosemite sequence(316โจฏ252)๋ฅผ 268MHz๋กœ ๋™์ž‘ํ•˜์˜€์„ ๊ฒฝ์šฐ ์Šค์ผ€์ค„๋ง์„ ๊ฐ ๋‹จ๊ณ„๋ณ„ ๋ฐ์ดํ„ฐ๊ฐ€ ์ถœ๋ ฅ๋˜๋Š” ์‹œ๊ฐ„์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ scan-order ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜๋ฏ€๋กœ GS์™€ GU ๋‹จ์˜ y์ถ• ์ถœ๋ ฅ์„ ์œ„ํ•ด์„œ๋Š” ๊ฐ๊ฐ ์ด์ „ 4๊ฐœ ํ–‰์˜ x์ถ• ์ถœ๋ ฅ๊ณผ GS ์ถœ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ํŠน์ • ํ–‰์— ๋Œ€ํ•œ ์—ฐ์‚ฐ์„ ์ง„ํ–‰ํ•œ ํ›„ ๋‹ค์Œ ํ–‰์˜ ์—ฐ์‚ฐ ์‹œ์—๋„ ์ด์ „ 4๊ฐœ ํ–‰์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐ˜๋ณต์ ์œผ๋กœ ์š”๊ตฌ๋˜๋ฏ€๋กœ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฝ์ž…ํ–ˆ๋‹ค. WS์™€ Residual ๋‹จ์˜ ์ถœ๋ ฅ์„ ์œ„ํ•ด์„œ๋„ ์ค‘๊ฐ„ ํ•ฉ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์ €์žฅ๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฝ์ž…ํ•ด์„œ ์ค‘์ฒฉ์„ ์ ์šฉํ•˜๊ณ  ์ด์ „ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ๋Ÿ‰์„ ์ค„์˜€๋‹ค. ๊ฐ ๋ชจ๋“ˆ์—์„œ ์ƒˆ๋กœ์šด ์ถœ๋ ฅ์ด ๋งŒ๋“ค์–ด์ง€๋ฉด, ๋‹ค์Œ ํ–‰์˜ ์—ฐ์‚ฐ์—์„œ ํ•„์š”ํ•˜์ง€ ์•Š์€ ๋ฉ”๋ชจ๋ฆฌ ์œ„์น˜์— ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐฑ์‹ ํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ์—ฐ์‚ฐ ํšจ์œจ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค.

๊ทธ๋ฆผ 8์˜ ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ด 15.43KB ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ค‘์ฒฉ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด GU ๋ชจ๋“ˆ์˜ ์ถœ๋ ฅ ํƒ€์ด๋ฐ์„ ์กฐ์ •ํ•œ๋‹ค. GU ๋‹จ๊ณ„์˜ ์ถœ๋ ฅ gu_t, gu_x, gu_y๊ฐ€ ๋™์‹œ์— ๋‹ค์Œ ๋‹จ๊ณ„๋กœ ์ž…๋ ฅ๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ ๋ฉ”๋ชจ๋ฆฌ์— gu_t, gu_x ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•œ๋‹ค. ๋˜ํ•œ WS ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•œ ์ฒซ ์ถœ๋ ฅ ๊ฐ’์„ ์ด์šฉํ•ด ES ๋‹จ๊ณ„์—์„œ (u,v)๋ฅผ ๊ณ„์‚ฐํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋•Œ 9๋‹จ ํŒŒ์ดํ”„๋ผ์ธ ๋‚˜๋ˆ—์…ˆ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋ฏ€๋กœ WS ์ฒซ ์ถœ๋ ฅ์ด ๋ฐœ์ƒํ•œ์ง€ ์•ฝ 0.03ฮผs ํ›„์ธ 14.13ฮผs๋ถ€ํ„ฐ (u,v) ๋ฒกํ„ฐ๊ฐ€ ์ถœ๋ ฅ๋œ๋‹ค. ๋™์‹œ์— ์‹ ๋ขฐ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•œ Validation๊ณผ Residual ๋ชจ๋“ˆ์˜ ์ถœ๋ ฅ๋„ 14.13ฮผs์—์„œ ์ƒ์„ฑ๋œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ Validation ๋ชจ๋“ˆ์˜ ์ž…๋ ฅ ๊ฐ’์ธ sumIxIx, sumIyIy, sumIxIy๋Š” WS ์ฒซ ์ถœ๋ ฅ์ด ๋ฐœ์ƒํ•œ์ง€ ์•ฝ 0.007ฮผs ํ›„์— ์ž…๋ ฅ๋˜์•ผ ํ•˜๋ฉฐ Residual ๋ชจ๋“ˆ์—์„œ gu_t, gu_x, gu_y๋Š” ์ฒซ GU ์ถœ๋ ฅ์ด ๋ฐœ์ƒํ•œ์ง€ 0.03ฮผs ํ›„, ๋˜ ๋‹ค๋ฅธ ์ž…๋ ฅ ๊ฐ’์ธ sumIxIx, sumIyIy, sumItIt ์—ญ์‹œ WS ์ฒซ ์ถœ๋ ฅ์ด ๋ฐœ์ƒํ•œ ์ง€ 0.03ฮผs ํ›„์— ์ž…๋ ฅ๋˜์–ด์•ผ ํ•œ๋‹ค. ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์—์„œ๋Š” ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ๋ฅผ ์ด์šฉํ•ด ์ž…๋ ฅ ํƒ€์ด๋ฐ์„ ๋งž์ถฐ์ฃผ์—ˆ๋‹ค.

4.2 ์„ฑ๋Šฅ ๋ถ„์„

ํ‘œ 1์—์„œ๋Š” Yosemite Sequence์˜ Ground Truth ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ optical flow์˜ ํ‰๊ท  ๊ฐ๋„ ์ฐจ์ด(AAE)์™€ ํ‘œ์ค€ํŽธ์ฐจ, ๋ฐ€๋„ ๋“ฑ์„ ํƒ€ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ํ‘œ 1์—์„œ ๊ด„ํ˜ธ ์•ˆ์— ์ˆซ์ž๋Š” ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์„ ์†Œํ”„ํŠธ์›จ์–ด๋กœ ๊ตฌํ˜„ํ–ˆ์„ ๋•Œ์˜ ์ˆ˜์น˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ•˜๋“œ์›จ์–ด์˜ ์„ฑ๋Šฅ๊ณผ์˜ ์ฐจ์ด๋Š” ์‹ ํ˜ธ๋“ค์— ๋Œ€ํ•œ ๋น„ํŠธ ํ• ๋‹น๊ณผ ์—ฐ์‚ฐ์—์„œ ๋ฐœ์ƒํ•œ ์—๋Ÿฌ์—์„œ ์—ฐ์œ ํ•œ ๊ฒƒ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค. AAE์™€ ๋ฐ€๋„๋Š” ์„œ๋กœ ์ƒ๊ด€๋„๊ฐ€ ๋†’๊ธฐ ๋•Œ๋ฌธ์— $T_{value}$์™€ $\epsilon$๋ฅผ ์ ์ ˆํžˆ ์กฐ์ ˆํ•˜์—ฌ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

ํ‘œ 1 Optical flow ์‹œ์Šคํ…œ์˜ ์—๋Ÿฌ ๋ถ„์„

Table 1 Error analysis of the optical flow systems

Algorithm

AAE

Std deviation

Density(%)

Diaz[9]

3.52

9.24

36.47

Seong[10]

3.75

8.22

35.24

Mahalingam[11]

6.37

11.37

38.30

Barranco[12]

5.97

-

59.88

Proposed

$T _{value}$=1.6

3.70(3.44)

5.88(4.41)

39.20(41.39)

$T _{value}$=2.0

3.47(3.38)

5.34(4.38)

36.63(38.92)

ํ‘œ 2 Optical flow ์‹œ์Šคํ…œ์˜ ํ•˜๋“œ์›จ์–ด ๋ถ„์„.

Table 2 Hardware analysis of the optical flow systems.

proposed

[9]

[10]

[11]

[12]

Image size

316ร—252

800ร—600

800ร—600

800ร—600

640ร—480

800ร—600

Max clock (MHz)

268

82

94

55

83

Memory (KB)

15.43

93.01

90

133.5

45

ยญ

Fps (frame/sec)

3,322

551

170

196

32

172

Mpixel/sec

264.6

81.6

94.08

9.83

82.56

Cost (Kgate)

71.59

1,731.9

ยญ

1,580

ยญ

Implementation

ASIC

(110nm)

FPGA

(150nm)

FPGA

(40nm)

FPGA

(130nm)

FPGA

(90nm)

ํ‘œ 2๋Š” ์ œ์•ˆํ•œ optical flow ์‹œ์Šคํ…œ์˜ ํ•˜๋“œ์›จ์–ด ๋ถ„์„์„ ๋ณด์—ฌ์ฃผ๋ฉฐ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์—์„œ ํƒ€ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ optical flow ์‹œ์Šคํ…œ์€ VerilogHDL๋กœ ์„ค๊ณ„ํ•˜์˜€์œผ๋ฉฐ ๋™๋ถ€ํ•˜์ดํ… 110nm ํ‘œ์ค€ ์…€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋กœ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ํ•ฉ์„ฑ ๊ฒฐ๊ณผ ์ „์ฒด ์‹œ์Šคํ…œ์€ 2-input NAND ๊ฒŒ์ดํŠธ ๊ธฐ์ค€ 71.59K์˜ ๊ฒŒ์ดํŠธ๊ฐ€ ํ•„์š”ํ•˜๊ณ  ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์—์„œ ์ค‘๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ด 15.43KB์˜ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์œผ๋กœ Yosemite Sequence์˜ optical flow๋ฅผ ์—ฐ์‚ฐํ•  ๋•Œ ์ฒ˜๋ฆฌ์„ฑ๋Šฅ์€ 3,322fps์ด๊ณ  ๋™์ž‘ ์ฃผํŒŒ์ˆ˜๋Š” 268MHz์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์™€ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” LK ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ASIC ๊ตฌํ˜„์‚ฌ๋ก€๊ฐ€ ์—†์–ด์„œ FPGA ์‚ฌ๋ก€์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ASIC์œผ๋กœ ์„ค๊ณ„๋˜์–ด FPGA์˜ ๊ฒฝ์šฐ์™€ ์ง์ ‘ ๋น„๊ตํ•˜๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ์ง€๋งŒ ์ ์€ ํ•˜๋“œ์›จ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„๊ต์  ํฐ ์„ฑ๋Šฅ๊ฐœ์„ ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ ํ‘œ 2์˜ 800ร—600 ๋ณด๋‹ค ํ›จ์”ฌ ํฐ ์˜์ƒ์—์„œ๋„ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

๊ทธ๋ฆผ 9. Yosemite Sequnece์˜ optical flow ๊ฒฐ๊ณผ

Fig. 9. Optical flow result of the Yosemite Sequence

../../Resources/kiee/KIEE.2025.74.9.1591/fig9-1.png

../../Resources/kiee/KIEE.2025.74.9.1591/fig9-2.png

๊ทธ๋ฆผ 9๋Š” Yosemite Sequence ์˜ 8๋ฒˆ์งธ ํ”„๋ ˆ์ž„์— ๋Œ€ํ•˜์—ฌ ์ œ์•ˆํ•œ ํ•˜๋“œ์›จ์–ด๋กœ ์ฒ˜๋ฆฌํ•œ optical flow ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋ณธ ๋ชจ์˜์‹คํ—˜์—์„œ $T_{value}$=1.6, $\epsilon$=0.01๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์—์„œ $T_{value}$๋ฅผ 1.6์œผ๋กœ ํ–ˆ์„ ๋•Œ AAE์™€ ํ‘œ์ค€ํŽธ์ฐจ๋Š” ๋†’๊ฒŒ ๋‚˜์˜ค์ง€๋งŒ ๋ฐ€๋„๊ฐ€ ๋†’๊ณ , $T_{value}$๋ฅผ 2.0์œผ๋กœ ํ–ˆ์„ ๋•Œ ๋ฐ€๋„๋Š” ๋‚ฎ์ง€๋งŒ AAE์™€ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ ์ข‹์•„์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ํƒ€ ์‹œ์Šคํ…œ์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ AAE์™€ ๋ฐ€๋„๊ฐ€ ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๊ณ , [9]๋Š” ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ๊ณผ ๋น„์Šทํ•œ AAE์™€ ๋ฐ€๋„๋ฅผ ๋ณด์ด์ง€๋งŒ ํ‘œ์ค€ํŽธ์ฐจ์—์„œ ํฌ๊ฒŒ ์ฐจ์ด๊ฐ€ ๋‚˜๊ธฐ ๋•Œ๋ฌธ์— ์งˆ์ ์ธ ๋ถ€๋ถ„์—์„œ ์ •ํ™•๋„์— ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์ด ๋‹ค๋ฅธ ์„ ํ–‰์—ฐ๊ตฌ [9-12]์™€ ๋น„๊ตํ•˜์—ฌ ์ฒ˜๋ฆฌ์„ฑ๋Šฅ์ด ์ข‹๊ณ  ๋” ๋‚ฎ์€ ์—๋Ÿฌ์œจ๊ณผ ๋†’์€ ๋ฐ€๋„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์‚ฌ์šฉํ•œ ๋ฉ”๋ชจ๋ฆฌ์™€ ๊ฒŒ์ดํŠธ ์ˆ˜ ๋˜ํ•œ ๋‹ค๋ฅธ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ๋ณด๋‹ค ๋” ์ ๊ฒŒ ์‚ฌ์šฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ž์› ์‚ฌ์šฉ์ ์ธ ์ธก๋ฉด์—์„œ๋„ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ตœ์ ํ™”๋„๊ฐ€ ๋‚ฎ์€ FPGA์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋”๋ผ๋„ ์ถฉ๋ถ„ํ•œ ๊ฒฝ์Ÿ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ์ƒ๊ฐ๋œ๋‹ค.

5. ๊ฒฐ ๋ก 

์ œ์•ˆ๋œ LK optical flow ์‹œ์Šคํ…œ์€ ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์„ ์ ์šฉํ•œ ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ์—…๋ฐ์ดํŠธ์™€ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ ๊ตฌ์กฐ ๋ฐ ํŒŒ์ดํ”„๋ผ์ธ ์ ์šฉ ๋“ฑ์„ ํ†ตํ•ด ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ์ฆ˜๋ณด๋‹ค ๋†’์€ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ๊ณผ ํ•˜๋“œ์›จ์–ด ํšจ์œจ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ํ”ฝ์…€ ๋ฐ์ดํ„ฐ ์ง„ํ–‰ ๋ฐฉํ–ฅ๊ณผ ์ง๊ตํ•˜๋Š” ๋ฐฉํ–ฅ์˜ ์ปค๋„ ์—ฐ์‚ฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฝ์ž…ํ•˜๊ณ  ์ง์ˆ˜์™€ ํ™€์ˆ˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฒˆ๊ฐˆ์•„ ์ฒ˜๋ฆฌํ•˜๋Š” ์—…๋ฐ์ดํŠธ ๋ฐฉ์‹์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์—ฐ์‚ฐ ์ง€์—ฐ์„ ์ค„์ด๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ๋„ ๋งค ์‚ฌ์ดํด๋งˆ๋‹ค ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๋˜ํ•œ ํŒŒ์ดํ”„๋ผ์ด๋‹์„ ํ†ตํ•ด ์ž„๊ณ„ ๊ฒฝ๋กœ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ณ  ์ค‘์ฒฉ ์Šค์ผ€์ค„๋ง์„ ์ ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„ํ–ˆ์œผ๋ฉฐ ์—ฐ์‚ฐ ๋ณต์žก๋„ ๊ฐœ์„ ์„ ์œ„ํ•ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ปค๋„ ์—ฐ์‚ฐ์„ ๋‹จ์ˆœํ•œ ์‰ฌํ”„ํŠธ ์—ฐ์‚ฐ์œผ๋กœ ๋Œ€์ฒดํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ตฌ์กฐ๋Š” ๋™๋ถ€ํ•˜์ดํ… 110nm ํ‘œ์ค€ ์…€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋กœ ํ•ฉ์„ฑํ•˜์—ฌ Yosemite Sequence ์˜์ƒ ๊ธฐ์ค€ 3.70% ์˜ค์ฐจ์œจ๊ณผ ์ตœ๋Œ€ ๋™์ž‘์ฃผํŒŒ์ˆ˜ 268MHz(264.6Mpixel/s)๋ฅผ ๋ณด์ด๋ฉฐ, 71.59K๊ฐœ์˜ ๊ฒŒ์ดํŠธ์™€ 15.43KB์˜ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

๊ฐ์‚ฌ์˜ ๊ธ€

We thank IDEC (IC Design Education Center) for providing us with EDA softwares.

References

1 
A. Alfarano, L. Maiano, L. Papa and I. Amerini, โ€œEstimating optical flow: A comprehensive review of the state of the art,โ€ Comput. Vis. Image Understand., vol. 249, Sep. 2024. https://doi.org/10.1016/j.cviu.2024.104160DOI
2 
J. Barron, D. Fleet and S. Beauchemin, โ€œPerformance of optical flow techniques,โ€ Systems and Experiment, vol. 12, pp. 43-77, 1994. https://doi.org/10.1007/BF01420984DOI
3 
B. Horn and B. Schunck, โ€œDetermining optical flow,โ€ Artif. Intell., vol. 17, nos. 1-3, pp. 185-203, 1981. https://doi.org/10.1016/0004-3702(81)90024-2DOI
4 
B. Lucas and T. Kanade, โ€œAn iterative image registration technique with an application to stereo vision,โ€ in Proc. 7th Int. Joint Conf. Artif. Intell., pp. 674-679, 1981. https://hal.science/hal-03697340DOI
5 
L. Alvarez, J. Weickert and J. Sรกnchez, โ€œReliable estimation of dense optical flow fields with large displacements,โ€ Int. J. Comput. Vis., vol. 39, no. 1, pp. 41-56, Aug. 2000. https://doi.org/10.1023/A:1008170101536DOI
6 
J. Brandt, โ€œImproved accuracy in gradient-based optical flow estimation,โ€ Int. J. Comput. Vis., vol. 25, no. 1, pp. 5-22, Oct. 1997. https://doi.org/10.1023/A:1007987001439DOI
7 
A. Plyer, G. Le Besnerais and F. Champagnat, โ€œMassively parallel Lucas Kanade optical flow for real-time video processing applications,โ€ J. Real-Time Image Process., pp. 1-18, Apr. 2014. https://doi.org/10.1007/s11554-014-0423-0DOI
8 
I. Ishii, T. Taniguchi, K. Yamamoto and T. Takaki, โ€œHigh-frame-rate optical flow system,โ€ IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 1, pp. 105-112, Jan. 2012. DOI: 10.1109/TCSVT.2011.2158340DOI
9 
J. Dรญaz, E. Ros, R. Agรญs and J. L. Bernier, โ€œSuperpipelined high performance optical-flow computation architecture,โ€ Comput. Vis. Image Understand., vol. 112, no. 3, pp. 262-273, Dec. 2008. https://doi.org/10.1016/j.cviu.2008.05.006DOI
10 
H. Seong, C. Rhee and H. Lee, โ€œA novel hardware architecture of the Lucasโ€“Kanade optical flow for reduced frame memory access,โ€ IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 6, pp. 1187-1199, Jun. 2016. DOI: 10.1109/TCSVT.2015.2437077DOI
11 
V. Mahalingam, K. Bhattacharya, N. Ranganathan, H. Chakravarthula, R. Murphy and K. Pratt, โ€œA VLSI architecture and algorithm for Lucasโ€“Kanade-based optical flow computation,โ€ IEEE Trans. Very Large Scale Integr. Syst., vol. 18, no. 1, pp. 29-38, Jan. 2010. DOI: 10.1109/TVLSI.2008.2006900DOI
12 
F. Barranco, M. Tomasi, J. Diaz, M. Vanegas and E. Ros, โ€œParallel architecture for hierarchical optical flow estimation based on FPGA,โ€ IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 6, pp. 1058-1067, Jun. 2012. DOI: 10.1109/TVLSI.2011.2145423DOI
13 
S. Jang and C. Kyung, โ€œResource-Efficient and High -Throughput VLSI Design of Global Optical Flow Method for Mobile Systems,โ€ IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 7, pp. 1717-1725, July 2020. DOI: 10.1109/TVLSI.2020.2984822DOI
14 
B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford University Press, pp. 133-136, 1999. https://dl.acm.org/doi/10.1145/3744710DOI

์ €์ž์†Œ๊ฐœ

๊น€๋ฏผ์ˆ˜(Min-Su Kim)
../../Resources/kiee/KIEE.2025.74.9.1591/au1.png

He received his B.S degree in Information, Communication, and Electronic Engineering from The Catholic University of Korea in 2025. His research interests include seminconductor and digital system design.

๋ฐ•์ˆ˜๋ฏผ(Su-Min Park)
../../Resources/kiee/KIEE.2025.74.9.1591/au2.png

He will receive his B.S degree in Information, Communication, and Electronic Engineering from The Catholic University of Korea in 2026. His research interests include seminconductor and digital system design.

์กฐ์šฐ์„ฑ(Woo-Sung Cho)
../../Resources/kiee/KIEE.2025.74.9.1591/au3.png

He will receive his B.S degree in Information, Communication, and Electronic Engineering from The Catholic University of Korea in 2026. His research interests include seminconductor and digital system design.

๋ฐ•ํƒœ๊ทผ(Tae-Geun Park)
../../Resources/kiee/KIEE.2025.74.9.1591/au4.png

He received his B.S degree in Electronic Engineering from Yonsei University, Korea in 1985 and M.S and Ph.D degrees from Syracuse University, USA in 1988 and 1993. Currently he is a professor in Information, Communication, and Electronic Engineering in The Catholic University of Korea. His research interests include VLSI design, CAD, and computer architecture.