• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical, Electronic Engineering, University of Ulsan, Republic of Korea. E-mail : cksldla@ulsan.ac.kr, tjftnwls00@ulsan.ac.kr)



Lithium-ion Battery, SOH estimation, Deep learning, Multi-modal

1. ์„œ ๋ก 

์ตœ๊ทผ ๋ฆฌํŠฌ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ๋Š” ๋†’์€ ์—๋„ˆ์ง€ ๋ฐ€๋„, ๊ธด ์ˆ˜๋ช…, ์นœํ™˜๊ฒฝ์„ฑ ๋“ฑ์˜ ์ด์ ์œผ๋กœ ์ธํ•ด ์ „๊ธฐ์ฐจ ์‚ฐ์—…์—์„œ์˜ ์ˆ˜์š”๊ฐ€ ๊พธ์ค€ํžˆ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค[1โ€“2]. ์ด์— ๋”ฐ๋ผ ์—ดํญ์ฃผ, ํ™”์žฌ ๋“ฑ์˜ ์•ˆ์ „ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์•ˆ์ „ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ์ ์ ˆํ•œ ๊ต์ฒด ์‹œ์  ํŒ๋‹จ์€ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฌ์šฉ์— ํ•„์ˆ˜์ ์ด๋ฉฐ, ์ด๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ฃผ์š” ์ƒํƒœ ์ง€ํ‘œ ์ค‘ ํ•˜๋‚˜์ธ SOH(State of Health)๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง„๋‹ค[3]. SOH๋Š” ์ „๊ธฐ์ฐจ์˜ ์ฃผํ–‰ ๊ฐ€๋Šฅ๊ฑฐ๋ฆฌ, ์ถฉ์ „ ํšจ์œจ, ๊ฐ€์† ์„ฑ๋Šฅ ๋“ฑ๊ณผ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ์–ด ์ •ํ™•ํ•œ ์ถ”์ •์ด ์ค‘์š”ํ•˜๋‹ค[4]. ์‚ฌ์šฉ์ž์— ๋”ฐ๋ผ ๋ณ€ํ™” ์–‘์ƒ์ด ๋‹ฌ๋ผ ์ •ํ™•ํ•œ ์ถ”์ •์— ์–ด๋ ค์›€์ด ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ถ”์ • ์˜ค์ฐจ๋Š” ์ฃผํ–‰ ์‚ฌ์ดํด์˜ ๋ˆ„์ ์— ๋”ฐ๋ผ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ์ œ์–ด์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค[5]. ๋”ฐ๋ผ์„œ ์žฅ๊ธฐ์ ์ธ ์‹ ๋ขฐ์„ฑ๊ณผ ์•ˆ์ •์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋ณด๋‹ค ์ •๋ฐ€ํ•˜๊ณ  ๊ฒฌ๊ณ ํ•œ ์ถ”์ • ๋ชจ๋ธ์ด ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋Š” ์ „๊ธฐ์ฐจ ์‚ฐ์—… ์ „๋ฐ˜์— ๊ฑธ์ณ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค[6-7].

๋ฐฐํ„ฐ๋ฆฌ์˜ ์ƒํƒœ ์ถ”์ •์„ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹๊ณผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค[8]. ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋ฐฐํ„ฐ๋ฆฌ์˜ ๋“ฑ๊ฐ€ํšŒ๋กœ ๋ชจ๋ธ, ์นผ๋งŒ ํ•„ํ„ฐ ๋“ฑ ์ˆ˜ํ•™์  ์ˆ˜์‹์„ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์‹์˜ ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด SOH๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค[9]. ๊ทธ๋Ÿฌ๋‚˜ ์ด์™€ ๊ฐ™์€ ๋ฐฉ์‹์€ ์ •๋ฐ€ํ•œ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋ง์ด ์š”๊ตฌ๋˜๋ฉฐ, ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ๊ฐ€๋ณ€๋˜๋Š” ์š”์†Œ๋ฅผ ๋ชจ๋‘ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ค์šฐ๋ฏ€๋กœ ์ถ”์ • ์ •ํ™•๋„๊ฐ€ ์ €ํ•˜๋˜๋Š” ํ•œ๊ณ„๋ฅผ ์ง€๋‹Œ๋‹ค[10]. ์ด์™€ ๋น„๊ตํ•˜์—ฌ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ†ต๊ณ„์  ๋ถ„์„, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด SOH๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ํ•ด๋‹น ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋ฐฐํ„ฐ๋ฆฌ์— ๋Œ€ํ•œ ์ „๋ฌธ์ ์ธ ์ง€์‹ ์—†์ด๋„ ๋ฐฐํ„ฐ๋ฆฌ์˜ SOH ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๋ณต์žกํ•˜๊ณ  ๋น„์„ ํ˜•์ ์ธ ์‹ค์ œ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์˜ ๋ถˆํ™•์‹ค์„ฑ ๋ฐ ๋‹ค์–‘์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค[11].

๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์—๋Š” ํฌ๊ฒŒ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๊ณผ ๋น„๊ตํ•˜์—ฌ ๋ณต์žกํ•œ ํŒจํ„ด์„ ์ธ์‹๊ณผ ๋น„์„ ํ˜•์ ์ธ ๋ชจ๋ธ๋ง์— ๊ฐ•์ ์„ ๊ฐ€์ง€๋ฏ€๋กœ ์ตœ๊ทผ ์—ฐ๊ตฌ์— ๋งŽ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. Lijun et al.[12]์€ ์‹œ๊ณ„์—ด ํ•™์Šต์— ์ ํ•ฉํ•œ LSTM๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, Park et al.[13]๋Š” ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ CNN์„ ๊ธฐ๋ฐ˜์œผ๋กœ SOH๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋‹จ์ผ ๋ชจ๋ธ์„ ํ†ตํ•ด ์ถ”์ถœํ•˜๊ธฐ ์–ด๋ ค์šด ํŠน์ง•์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์œตํ•ฉ ๋ชจ๋ธ์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. Anurag et al.[14]์€ RNN์„ ํ†ตํ•ด ์‹œ๊ฐ„์ ์ธ ํŠน์„ฑ์„ ํ•™์Šตํ•œ ํ›„ CNN์„ ํ†ตํ•ด ๊ณต๊ฐ„์ ์ธ ํŠน์„ฑ์„ ํ•™์Šตํ•œ ์ถ”์ • ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๊ณ , Sridharan et al.[15]๋Š” LSTM, MLP ๊ฐ ๋ชจ๋ธ์˜ ์žฅ์ ์„ ์œตํ•ฉํ•œ ์ถ”์ • ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋“ค์€ ๋‹จ์ผ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ์ง€๋‹Œ๋‹ค. ํ•˜์ง€๋งŒ ๋ฐฐํ„ฐ๋ฆฌ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋Š” ๋ณตํ•ฉ์ ์ธ ๋ฌผ๋ฆฌ๋Ÿ‰์— ๋”ฐ๋ผ ๊ฒฐ์ •๋˜์–ด, ํ•˜๋‚˜์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ SOH ์ถ”์ •์€ ์ •ํ™•๋„์˜ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•  ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐฐํ„ฐ๋ฆฌ์˜ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” Multi-modal Fusion(MMF) ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” MMF๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ƒํƒœ ์ •๋ณด๋ฅผ ์ง€๋‹Œ ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ ์œ ํ˜•์— ์ ํ•ฉํ•œ MLP, LSTM, CNN์„ ์œตํ•ฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์„ ์ถ”์ถœํ•˜์—ฌ SOH๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•จ์— ๋”ฐ๋ผ ๋ฐฐํ„ฐ๋ฆฌ์˜ ํŠน์„ฑ์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•œ SOH ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด MIT aging battery ๋ฐ์ดํ„ฐ์…‹์„ ์‹คํ—˜์— ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด SOH ์ถ”์ •์— ๋Œ€ํ•ด ์ œ์•ˆํ•œ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค[16].

๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์—ฌ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

1) ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ƒํƒœ ์ •๋ณด๋ฅผ ์ง€๋‹Œ ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด MLP, LSTM, CNN์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์œตํ•ฉํ•œ MMF ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค.

2) ํŠน์ • ๋ฐ์ดํ„ฐ ์œ ํ˜•์—๋งŒ ์ตœ์ ํ™”๋œ ๊ธฐ์กด ๋‹จ์ผ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๋ณต์žกํ•œ ๋ฐฐํ„ฐ๋ฆฌ ์—ดํ™” ํŒจํ„ด์— ๋”ฐ๋ฅธ ์ƒํƒœ ๋ณ€ํ™”๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์˜€๋‹ค.

3) MIT aging ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹จ์ผ ๋ฐ ์œตํ•ฉ ๋ชจ๋ธ๊ณผ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ •๋Ÿ‰์  ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

2. Feature Extraction

๋ฐฐํ„ฐ๋ฆฌ ์„ผ์„œ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด SOH ์ถ”์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ฃผ์š” ํŠน์„ฑ์„ ๋„์ถœํ•˜์˜€๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ์˜ ์—ดํ™” ๋ฐ ๋…ธํ™” ๊ฒฝํ–ฅ์€ SOH์— ํฐ ์˜ํ–ฅ์„ ์ฃผ๋ฉฐ, ์ „์•• ๋ฐ ์˜จ๋„ ๋ฐ์ดํ„ฐ์— ๋šœ๋ ทํ•˜๊ฒŒ ๋ฐ˜์˜๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์— ์ „์•• ๋ฐ ์˜จ๋„ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ Health Indicator(HI)๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ HI๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ฆ๋ถ„ ์šฉ๋Ÿ‰์˜ ํ”ผํฌ๊ฐ’ ๋ฐ ํ•ด๋‹น ์ „์••๊ฐ’, ํŠน์ • ์ „์••์—์„œ์˜ ๋ฐฉ์ „์šฉ๋Ÿ‰, ๋ฐฉ์ „ ์ „์•• ๊ณก์„ , ์ถฉยท๋ฐฉ์ „ ์˜จ๋„ heatmap์ด๋‹ค. ์„ ์ •ํ•œ HI์˜ ํ•™์Šต์„ ์œ„ํ•ด ๊ฐ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์— ์ ํ•ฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

2.1 Point wise HI with MLP

๋ฐฐํ„ฐ๋ฆฌ์˜ ์ฆ๋ถ„ ์šฉ๋Ÿ‰์€ ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘์˜ ํ™œ์„ฑ๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ฃผ์š” ํŠน์„ฑ ์ง€ํ‘œ๋กœ, ๋ฐฐํ„ฐ๋ฆฌ์˜ ์—ดํ™” ์ƒํƒœ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ์‚ฌ์šฉ๋จ์— ๋”ฐ๋ผ ๋™์ผํ•œ ์ „์•• ๊ตฌ๊ฐ„์—์„œ ๋ฐฉ์ถœ ๊ฐ€๋Šฅํ•œ ์ „ํ•˜๋Ÿ‰์ด ์ ์ฐจ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๋ฉฐ, ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™์ด ์ฆ๋ถ„ ์šฉ๋Ÿ‰ ๊ณก์„ ์˜ ํ”ผํฌ๊ฐ’ ๋˜ํ•œ ์ ์ง„์ ์œผ๋กœ ๊ฐ์†Œํ•˜๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ์‚ฌ์šฉ๋Ÿ‰์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋‚ฎ์€ ์ „์•• ์˜์—ญ์—์„œ ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘์ด ๋ณด๋‹ค ํ™œ๋ฐœํ•ด์ง€๋Š” ํŠน์„ฑ์ด ๋‚˜ํƒ€๋‚˜๋ฉฐ, ์ด๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ ์‚ฌ์šฉ ์ „์••์ด ์ ์ฐจ ๊ฐ์†Œํ•˜๊ณ  ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ SOH ์ถ”์ •์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ[16], ์‹ (1)๊ณผ ๊ฐ™๋‹ค. ์—ฌ๊ธฐ์„œ IC๋Š” ์ฆ๋ถ„ ์šฉ๋Ÿ‰, t๋Š” ์‹œ๊ฐ„, Q๋Š” ์šฉ๋Ÿ‰, V๋Š” ์ „์••์„ ์˜๋ฏธํ•œ๋‹ค.

(1)
$IC = I\dfrac{dt}{d V}=\dfrac{d Q}{d V}$

๊ทธ๋ฆผ 1. ์ „์••์— ๋”ฐ๋ฅธ ์ฆ๋ถ„ ์šฉ๋Ÿ‰ ๊ณก์„ 

Fig. 1. Incremental capacitance curve according to voltage

../../Resources/kiee/KIEE.2025.74.11.1926/fig1.png

๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ SOH์— ๋”ฐ๋ฅธ ์—ดํ™” ์ƒํƒœ ์ •๋ณด๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ์ง€ํ‘œ๋กœ ์ฆ๋ถ„ ์šฉ๋Ÿ‰ ๊ณก์„ ์˜ ํ”ผํฌ๊ฐ’ ๋ฐ ํ•ด๋‹น ํ”ผํฌ ์ „์••์„ HI๋กœ ์„ ์ •ํ•˜์˜€๋‹ค.

๋ฐฐํ„ฐ๋ฆฌ์˜ ๋ฐฉ์ „ ์šฉ๋Ÿ‰์€ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์—๋„ˆ์ง€์˜ ์ด๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€ํ‘œ๋กœ, ๋ฐฐํ„ฐ๋ฆฌ์˜ ๋…ธํ™” ์ƒํƒœ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ ์ฃผ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ฐฐํ„ฐ๋ฆฌ ๋‚ด๋ถ€์˜ ํ™œ์„ฑ ๋ฌผ์งˆ ์†์‹ค์ด ๋ฐœ์ƒํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ๋ณด์œ ํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ๋Œ€ ์šฉ๋Ÿ‰์ด ์ ์ง„์ ์œผ๋กœ ๊ฐ์†Œํ•˜๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ๋…ธํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๋‚ด๋ถ€ ์ €ํ•ญ์ด ์ฆ๊ฐ€ํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๊ทธ๋ฆผ 2์™€ ๊ฐ™์ด ์ „์•• ๊ฐ•ํ•˜๊ฐ€ ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์„ค์ •๋œ ์ตœ์†Œ ๋ฐฉ์ „ ์ „์••์— ๋„๋‹ฌํ•˜๋Š” ์‹œ์ ์ด ์•ž๋‹น๊ฒจ์ง€๋ฉฐ, ํŠน์ • ์ „์•• ๊ตฌ๊ฐ„์—์„œ์˜ ๋ฐฉ์ „ ์šฉ๋Ÿ‰์ด ๊ฐ์†Œํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋…ธํ™” ์ƒํƒœ๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•œ ์ง€ํ‘œ๋กœ์จ, ํŠน์ • ์ „์••(2.2V)์—์„œ์˜ ๋ฐฉ์ „ ์šฉ๋Ÿ‰์„ HI๋กœ ์„ ์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 2. ์ „์••์— ๋”ฐ๋ฅธ ๋ฐฉ์ „ ์šฉ๋Ÿ‰ ๊ณก์„ 

Fig. 2. Discharge capacity curve according to voltage

../../Resources/kiee/KIEE.2025.74.11.1926/fig2.png

Point wise HI์˜ ์—ดํ™” ๋ฐ ๋…ธํ™” ํŠน์„ฑ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ MLP๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. point wise HI๋Š” ๊ตฌ์กฐํ™”๋œ ํŠน์ง• ๋ฒกํ„ฐ์˜ ํ˜•ํƒœ๋กœ, ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ฃผํ–‰ ์‚ฌ์ดํด์˜ ํŠน์„ฑ ์ง€ํ‘œ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋Š” ์‹œ๊ฐ„์ ๏‚ž๊ณต๊ฐ„์  ํŠน์„ฑ์„ ํฌํ•จํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ„๋‹จํ•˜๊ณ  ํšจ์œจ์ ์ธ MLP๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ ํŠน์„ฑ ๊ฐ„์˜ ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค. MLP๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ํ˜•ํƒœ์˜ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์œผ๋กœ, ์ž…๋ ฅ์ธต๊ณผ ํ•˜๋‚˜ ์ด์ƒ์˜ ์€๋‹‰์ธต, ๊ทธ๋ฆฌ๊ณ  ์ถœ๋ ฅ์ธต์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ์€๋‹‰์ธต์˜ ๊นŠ์ด๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก ๋ณด๋‹ค ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œํ˜„ ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 3๊ฐœ์˜ ์€๋‹‰์ธต์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ฒซ ๋ฒˆ์งธ ์€๋‹‰์ธต์€ 128๊ฐœ, ๋‘ ๋ฒˆ์งธ์™€ ์„ธ ๋ฒˆ์งธ ์€๋‹‰์ธต์€ ๊ฐ๊ฐ 64๊ฐœ, 32๊ฐœ์˜ ๋…ธ๋“œ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.

2.2 Sequence voltage HI with LSTM

๋ฐฐํ„ฐ๋ฆฌ์˜ ๋ฐฉ์ „ ์ „์•• ๊ณก์„ ์€ ๋ฐฉ์ „ ์‹œ์ž‘๋ถ€ํ„ฐ ์ข…๋ฃŒ ์‹œ์ ๊นŒ์ง€์˜ ์ „์•• ๋ณ€ํ™”๋ฅผ ์‹œ๊ณ„์—ด๋กœ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ด๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ ๋‚ด๋ถ€ ์ƒํƒœ ๋ฐ ์—ดํ™” ์ •๋„๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ์ค‘์š”ํ•œ ์ง€ํ‘œ์ด๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ๋…ธํ™”๋จ์— ๋”ฐ๋ผ ๋™์ผํ•œ ๋ฐฉ์ „ ์กฐ๊ฑด ํ•˜์—์„œ๋„ ๋ฐฉ์ „ ์ „์••์— ์กฐ๊ธฐ์— ๋„๋‹ฌํ•˜๋Š” ๊ฒฝํ–ฅ์ด ๋‚˜ํƒ€๋‚˜๋ฉฐ, ์ „๋ฐ˜์ ์ธ ๋ฐฉ์ „ ์†๋„ ๋˜ํ•œ ์ฆ๊ฐ€ํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์ธ๋‹ค. ์ด๋กœ ์ธํ•ด ๋™์ผํ•œ ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ ๋‚ด์—์„œ ์ „์•• ๋ณ€ํ™”๋Ÿ‰์ด ์ปค์ง€๋Š” ํŠน์„ฑ์ด ๊ด€์ฐฐ๋˜๋ฉฐ, ๊ทธ๋ฆผ 3๊ณผ ๊ฐ™์ด ํŠน์ • ์‹œ์  ํ˜น์€ ์ „์•• ๊ตฌ๊ฐ„์—์„œ์˜ ์ „์•• ๊ณก์„  ๊ธฐ์šธ๊ธฐ๊ฐ€ ๊ธ‰๊ฒฉํ•ด์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์ „์•• ๋ณ€ํ™”์˜ ์–‘์ƒ์€ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์—ดํ™” ๋ฐ ๋…ธํ™” ์ƒํƒœ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋ฏ€๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‹œ๊ณ„์—ด์  ํŠน์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์ „ ์ „์•• ๋ฐ์ดํ„ฐ๋ฅผ HI๋กœ ์„ ์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 3. ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ฐฉ์ „ ์ „์•• ๊ณก์„ 

Fig. 3. Discharge voltage curve over time

../../Resources/kiee/KIEE.2025.74.11.1926/fig3.png

๋ฐฉ์ „ ์ „์•• ๊ณก์„ ์— ๋ฐ˜์˜๋˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ ์—ดํ™” ํŠน์„ฑ์€ ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ๊ฐ•ํ•˜๊ฒŒ ์ง€๋‹ˆ๋ฏ€๋กœ, ๋ฐฉ์ „ ๊ณผ์ •์—์„œ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์ „์•• ๋ณ€ํ™”๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ์ „์•• ๋ฐ์ดํ„ฐ๋Š” ์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ๊ทธ ํŠน์„ฑ์ด ๋™์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋ฏ€๋กœ, ์‹œ๊ณ„์—ด ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ํ•™์Šตํ•œ๋‹ค. LSTM์€ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง์˜ ์ผ์ข…์œผ๋กœ, ๊ทธ๋ฆผ 4๊ณผ ๊ฐ™์ด ๊ตฌ์„ฑ๋˜๋ฉฐ, ์ผ๋ฐ˜์ ์ธ RNN์— ๋น„ํ•ด ๊ธด sequence๋ฅผ ํ•™์Šตํ•  ๋•Œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” gradient vanishing ๋ฐ gradient explosion ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ์œผ๋กœ ์ธํ•ด LSTM์€ ๋ฐฐํ„ฐ๋ฆฌ ์ „์••๊ณผ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์—ฐ์†์ ์œผ๋กœ ์ƒํƒœ๊ฐ€ ๋ณ€ํ™”ํ•˜๋Š” ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•˜๋‹ค.

LSTM์€ forget gate, input gate, output gate์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ๊ณผ๊ฑฐ ์ •๋ณด๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๊ธฐ์–ตํ•˜์—ฌ ์ค‘์š”ํ•œ ์‹œ๊ณ„์—ด ์ •๋ณด๋ฅผ ์žฅ๊ธฐ๊ฐ„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. forget gate๋Š” ๊ณผ๊ฑฐ ์ •๋ณด๋ฅผ ์–ผ๋งˆ๋‚˜ ๋ฐ˜์˜ ํ• ์ง€ ๊ฒฐ์ •ํ•˜๋ฉฐ, input gate๋Š” ํ˜„์‹œ์ ์˜ ์ •๋ณด๋ฅผ ์–ผ๋งˆ๋‚˜ ๋ฐ˜์˜ํ• ์ง€ ๊ฒฐ์ •ํ•œ๋‹ค. ๋‘ ์ •๋ณด๋ฅผ ํ†ตํ•ด ํ˜„์žฌ ์…€ ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” cell state์— ๋‚˜ํƒ€๋‚ด๋ฉฐ, output gate๋Š” cell state์—์„œ ์–ด๋–ค ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ด€๋ จ ์ˆ˜์‹์€ ์‹ (2)~(6)๊ณผ ๊ฐ™๋‹ค.

(2)
$f_{t}=\sigma(W_{f}\bullet[h_{t-1},\: x_{t}]+ b_{f})$
(3)
$c_{t}= f_{t}*c_{t-1}+i_{t}*\widetilde{c}_{t}$
(4)
$\omicron_{t}=\sigma(W_{\omicron}\bullet[h_{t-1},\: x_{t}]+b_{\omicron})$
(5)
$h_{t}= \omicron_{t}*\tan h(c_{t})$
(6)
$i_{t}=\sigma(W_{i}\bullet[h_{t-1},\: x_{t}]+ b_{i})$

์—ฌ๊ธฐ์„œ $h_{t-1}$๋Š” ์ด์ „ ์‹œ์ ์˜ ์ถœ๋ ฅ, $x_{t}$๋Š” ํ˜„์žฌ ์‹œ์ ์˜ ์ž…๋ ฅ, ์ตœ๊ทผ ์…€ ์ƒํƒœ $c_{t-1}$๋Š” ์ตœ๊ทผ ์…€ ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, $h_{t}$๋Š” ํ˜„์žฌ ์‹œ์ ์˜ ์ถœ๋ ฅ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 64๊ฐœ์˜ ๋…ธ๋“œ๋ฅผ ๊ฐ€์ง€๋Š” 2๊ฐœ์˜ ์€๋‹‰์ธต์œผ๋กœ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 4. LSTM ๊ตฌ์กฐ

Fig. 4. LSTM structure

../../Resources/kiee/KIEE.2025.74.11.1926/fig4.png

2.3 Heatmap HI with CNN

๋ฐฐํ„ฐ๋ฆฌ์˜ ์˜จ๋„๋Š” ์—ดํ™” ์ƒํƒœ๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ํ•ต์‹ฌ์ ์ธ ์ง€ํ‘œ๋กœ, SOH ์ถ”์ •์— ์žˆ์–ด ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ถฉยท๋ฐฉ์ „ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐœ์—ด ํ˜„์ƒ์€ ๋‚ด๋ถ€ ์ €ํ•ญ ์ฆ๊ฐ€๋ฅผ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ์—ดํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ๋‹ค. ํŠนํžˆ ๊ณ ์† ์ถฉยท๋ฐฉ์ „ ์กฐ๊ฑด์—์„œ๋Š” ๋ฐฐํ„ฐ๋ฆฌ ๋‚ด๋ถ€ ์˜จ๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๊ฑฐ๋‚˜ ๋น„์ •์ƒ์ ์ธ ์˜จ๋„ ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜จ๋„ ๋ณ€ํ™”๋Š” SOH ์ €ํ•˜์˜ ์„ ํ–‰ ์ง€ํ‘œ๋กœ ํ•ด์„๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ „์•• ๋ฐ ์šฉ๋Ÿ‰๊ณผ ๊ฐ™์€ ์ „๊ธฐ์  ํŠน์„ฑ๊ณผ ํ•จ๊ป˜ SOH ์˜ˆ์ธก์„ ์œ„ํ•œ ์œ ์˜๋ฏธํ•œ ํŠน์„ฑ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์˜จ๋„ ๋ณ€ํ™”๋ฅผ heatmap ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ทธ๋ฆผ 5์— ๋„์‹œํ•˜์˜€๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ์˜ ๋ณต์žกํ•œ ์—ดํ™” ์–‘์ƒ์„ heatmap ๊ธฐ๋ฐ˜์˜ ์‹œ๊ฐ์  ํŒจํ„ด์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์ด ์—ดํ™”์˜ ๊ณต๊ฐ„์  ํŠน์„ฑ์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค.

์˜จ๋„ ๋ณ€ํ™”๊ฐ€ ์‹œ๊ฐ์ ์œผ๋กœ ๊ตฌ์„ฑ๋จ์— ๋”ฐ๋ผ, ํ•ด๋‹น ๋ฐ์ดํ„ฐ๋Š” ์ฃผ๋ณ€ ๊ณต๊ฐ„ ์ •๋ณด์™€์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํฌํ•จํ•œ๋‹ค. ์ด๋Š” CNN์ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ณต๊ฐ„์  ํŒจํ„ด ๋ฐ ๋ณ€ํ™” ํŠน์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•œ ๊ตฌ์กฐ์ž„์„ ์˜๋ฏธํ•œ๋‹ค. CNN์€ ๋‹ค๋ฅธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋น„ํ•ด ๋ณต์žกํ•œ ์—ดํ™” ์–‘์ƒ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ณ ์ฐจ์› ํŠน์ง•์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ์œ ๋ฆฌํ•˜๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. CNN์€ ๊ทธ๋ฆผ 6์™€ ๊ฐ™์ด ์ผ๋ฐ˜์ ์œผ๋กœ ํ•ฉ์„ฑ๊ณฑ, ํ’€๋ง์ธต, ๊ทธ๋ฆฌ๊ณ  ์™„์ „ ์—ฐ๊ฒฐ์ธต์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์ธต์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ž ์žฌ์  ํŠน์„ฑ์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์ˆ˜์˜ ํ•„ํ„ฐ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ์ด์–ด์ง€๋Š” ํ’€๋ง ๊ณผ์ •์—์„œ๋Š” ํŠน์„ฑ ๋งต์˜ ์ฐจ์›์„ ์ถ•์†Œํ•˜์—ฌ ์—ฐ์‚ฐ ํšจ์œจ์„ ์ฆ๋Œ€์‹œํ‚ค๊ณ  ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์™„์ „ ์—ฐ๊ฒฐ์ธต์€ ์•ž์„  ํ•ฉ์„ฑ๊ณฑ ๋ฐ ํ’€๋ง ์ธต์—์„œ ์ถ”์ถœ๋œ ๊ณ ์ฐจ์› ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํšŒ๊ท€ ํ˜น์€ ๋ถ„๋ฅ˜๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ด€๋ จ ์ˆ˜์‹์€ ์‹ (7)~(8)๊ณผ ๊ฐ™๋‹ค.

(7)
$Y_{i,\: j}=\sum_{m}\sum_{n}X_{m,\: n}K_{i-m,\: j-n}$
(8)
../../Resources/kiee/KIEE.2025.74.11.1926/eq8.png

์—ฌ๊ธฐ์„œ $I_{m,\: n}$๋Š” ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ํ”ฝ์…€๊ฐ’, $K_{i,\: j}$์„ ์˜๋ฏธํ•˜๋ฉฐ, $Y_{i,\: j}$๋Š” ์ถœ๋ ฅ ํŠน์„ฑ ๋งต์˜ ํ”ฝ์…€๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 2๊ฐœ์˜ ํ•ฉ์„ฑ๊ณฑ ์ธต ๋ฐ 2๊ฐœ์˜ ํ’€๋ง ์ธต์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.

3. Multi-modal fusion model

3.1 Multi-modal fusion model

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฆฌํŠฌ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ SOH๋ฅผ ๋ณด๋‹ค ์ •๋ฐ€ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์œ ํ˜•์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” MMF ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ point wise, sequence, heatmap์˜ ์„ธ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ ์œ ํ˜•์„ ๊ฐ๊ฐ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด MLP, LSTM, CNN์˜ ์„ธ ๊ฐ€์ง€ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋ณ‘๋ ฌ ๊ตฌ์กฐ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. MMF ๋ชจ๋ธ์˜ ์ „์ฒด ๊ตฌ์กฐ๋Š” ๊ทธ๋ฆผ 7์— ์ œ์‹œํ•˜์˜€๋‹ค. MLP๋Š” ์ฆ๋ถ„ ์šฉ๋Ÿ‰ ๊ณก์„ ์˜ ํ”ผํฌ๊ฐ’, ํ”ผํฌ ์ „์••, ํŠน์ • ์ „์••(2.2V)์—์„œ์˜ ๋ฐฉ์ „ ์šฉ๋Ÿ‰๊ณผ ๊ฐ™์€ point wise๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ ์ •ํ˜•ํ™”๋œ ํŠน์„ฑ์„ ์ถ”์ถœํ•œ๋‹ค. LSTM์€ ๋ฐฉ์ „ ์ „์••์˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ๊ณผ ์—ดํ™”์— ๋”ฐ๋ฅธ ๋ณ€ํ™” ์–‘์ƒ์„ ํ•™์Šตํ•˜๋ฉฐ, CNN์€ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์˜จ๋„ ๋ถ„ํฌ ์ •๋ณด๋ฅผ heatmap ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ์ž…๋ ฅ๋ฐ›์•„ ๊ณต๊ฐ„์  ํŒจํ„ด๊ณผ ์‹œ๊ฐ์ ์ธ ์—ดํ™” ํŠน์„ฑ์„ ์ถ”์ถœํ•œ๋‹ค. ์ด์ฒ˜๋Ÿผ ์„ธ ๊ฐœ์˜ ๋‹จ์ผ ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ํŠน์ง•๋“ค์€ ํ†ตํ•ฉ๋˜์–ด, ์ดํ›„ ๋‘ ๊ฐœ์˜ ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์œผ๋กœ ๊ตฌ์„ฑ๋œ fusion head๋ฅผ ํ†ตํ•ด ์ตœ์ข… SOH ๊ฐ’์„ ์ถœ๋ ฅํ•œ๋‹ค.

์ œ์•ˆ๋œ MMF ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์œ ํ˜•์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋‚ดํฌ ํ•˜๊ณ  ์žˆ๋Š” ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ๋‹จ์ผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๋Œ€๋น„ ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํŠนํžˆ, point wise ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ •๋Ÿ‰์ ์ธ ์ง€ํ‘œ๋ฅผ, sequence ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์‹œ๊ณ„์—ด ํŠน์„ฑ์„, heatmap ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์‹œ๊ฐ์ ์ธ ์—ดํ™” ํŒจํ„ด์„ ๊ฐ๊ฐ ์ถ”์ถœํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ฉํ•จ์œผ๋กœ์จ, SOH ์˜ˆ์ธก์˜ ์ •ํ™•๋„ ๋ฐ ๊ฐ•๊ฑด์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๊ฐ ๋‹จ์ผ ๋ชจ๋ธ์€ ์ƒํ˜ธ ๋ณด์™„์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋ฏ€๋กœ, ์„ผ์„œ ๋ฐ์ดํ„ฐ์˜ ๊ฒฐ์ธก์ด๋‚˜ ๋…ธ์ด์ฆˆ๊ฐ€ ์กด์žฌํ•˜๋Š” ์‹ค์ œ ์‚ฐ์—… ํ™˜๊ฒฝ์—์„œ๋„ ์•ˆ์ •์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ‘๋ ฌ์  ์œตํ•ฉ ๊ตฌ์กฐ๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์œ ์—ฐํ•˜๊ฒŒ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ํ™•์žฅ์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋‹จ์ผ ๋ชจ๋ธ์—์„œ ์ถ”์ถœ๋œ ๊ณ ์ฐจ์› ํŠน์ง•๋“ค์„ ํ†ตํ•ฉํ•จ์œผ๋กœ์จ ๋ณด๋‹ค ๋ณตํ•ฉ์ ์ธ ์ •๋ณด ํ‘œํ˜„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค.

๊ทธ๋ฆผ 5. heatmap ์ด๋ฏธ์ง€ (a) ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์˜จ๋„ ๋ฐ์ดํ„ฐ, (b)heatmap์œผ๋กœ ๋ณ€ํ™˜ํ•œ ์˜จ๋„ ๋ฐ์ดํ„ฐ

Fig. 5. heatmap image (a) temperature data over time, (b) temperature data converted into a heatmap

../../Resources/kiee/KIEE.2025.74.11.1926/fig5.png

๊ทธ๋ฆผ 6. CNN ๊ตฌ์กฐ

Fig. 6. CNN Structure

../../Resources/kiee/KIEE.2025.74.11.1926/fig6.png

๊ทธ๋ฆผ 7. MMF ๋ชจ๋ธ ๊ตฌ์กฐ

Fig. 7. MMF Model Structure

../../Resources/kiee/KIEE.2025.74.11.1926/fig7.png

4. Experiments and Analysis

4.1 Dataset description

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์ถฉ์ „ ์กฐ๊ฑด์ด ๋ฐ˜์˜๋œ ๋ฆฌํŠฌ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ MIT Aging ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์˜€๋‹ค[17]. ์ด ๋ฐ์ดํ„ฐ์…‹์€ ์‹ค์ œ ์ƒ์—…์šฉ ์…€์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ์—ดํ™” ํŒจํ„ด์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด ์‹ค์‚ฌ์šฉ ํŒจํ„ด์„ ๋ฐ˜์˜ํ•œ SOH ์ถ”์ • ์—ฐ๊ตฌ์— ์ ํ•ฉํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ์…‹์€ SOH๊ฐ€ 80%์— ๋„๋‹ฌํ•˜๋Š” ์‹œ์ ์„ EOL(End of Life)๋กœ ์ •์˜ํ•˜๊ณ , ํ•ด๋‹น ์‹œ์ ๊นŒ์ง€์˜ ์ถฉยท๋ฐฉ์ „ ์ฃผ๊ธฐ๋ฅผ ์ธก์ •ํ•˜์—ฌ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ๋ชจ๋“  ์‹คํ—˜์€ 30โ„ƒ์˜ ์ผ์ •ํ•œ ์˜จ๋„ ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ์ถฉยท๋ฐฉ์ „ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‚ด๋ถ€ ๋ฐœ์—ด๋กœ ์ธํ•ด ์˜จ๋„๋Š” ์ตœ๋Œ€ 10โ„ƒ๊นŒ์ง€ ์ƒ์Šนํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ํŠนํžˆ, ์…€์˜ ๊ณ ์† ์ถฉ์ „ ์กฐ๊ฑด์—์„œ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ œ์กฐ์‚ฌ์—์„œ ๊ถŒ์žฅํ•˜๋Š” ์ถฉ์ „ ์†๋„์ธ 3.6C๋ถ€ํ„ฐ 6C๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ถฉ์ „ ์กฐ๊ฑด์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ฐฉ์ „ ์กฐ๊ฑด์€ ๋ชจ๋“  ์…€์— ๋Œ€ํ•ด ๋™์ผํ•˜๊ฒŒ 4C ์ •์ „๋ฅ˜๋กœ ์„ค์ •๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์•ฝ 150ํšŒ์—์„œ 2,300ํšŒ์— ์ด๋ฅด๋Š” ๋„“์€ ๋ฒ”์œ„์˜ ์ˆ˜๋ช… ์ฃผ๊ธฐ๋ฅผ ํฌํ•จํ•˜๋Š” ๋ฐ์ดํ„ฐ์…‹์„ ํ™•๋ณดํ•˜์˜€๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ ์…€์˜ ์„ธ๋ถ€ ์‚ฌ์–‘์€ ํ‘œ 1์— ์ œ์‹œ๋˜์–ด ์žˆ๋‹ค.

๋ณธ ์ ˆ์—์„œ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ์œ ํšจ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ œ์•ˆ๋œ ๋ชจ๋ธ์˜ ์œตํ•ฉ ๊ตฌ์กฐ๊ฐ€ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„ํ• ํ•˜์˜€๋‹ค. ์ „์ฒด 124๊ฐœ์˜ ๋ฆฌํŠฌ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ ์…€ ์ค‘, Cell 1๋ถ€ํ„ฐ 99์€ ํ•™์Šต์šฉ(train), Cell 100๋ถ€ํ„ฐ 112์€ ๊ฒ€์ฆ์šฉ(validation), Cell 113๋ถ€ํ„ฐ 122๊นŒ์ง€๋Š” ํ…Œ์ŠคํŠธ์šฉ(test)์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ํŠนํžˆ ํ…Œ์ŠคํŠธ ์…€์˜ ์ˆ˜๋ช… ์ฃผ๊ธฐ๋Š” ์•ฝ 750~1750 ์‚ฌ์ดํด๊นŒ์ง€ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ถ„ํฌ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ชจ๋ธ์ด ์„œ๋กœ ๋‹ค๋ฅธ ์—ดํ™” ํŠน์„ฑ๊ณผ ์ˆ˜๋ช… ๋ถ„ํฌ๋ฅผ ์ง€๋‹Œ ์…€์— ๋Œ€ํ•ด์„œ๋„ ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉฐ ์•ˆ์ •์ ์ธ SOH ์ถ”์ •์ด ๊ฐ€๋Šฅํ•จ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ํ™œ์šฉ๋˜์—ˆ๋‹ค.

ํ‘œ 1 MIT Aging ๋ฐ์ดํ„ฐ์…‹ ์„ธ๋ถ€ ์‚ฌ์–‘

Table 1 MIT Aging Dataset Detailed Specifications

Battery model

A123-APR18650M1A

Nominal capacity

1.1Ah

Cut-off voltage

2.0V

Cut-off current

C/50

Amount of cells

124

4.2 Result analysis

๋ณธ ์‹คํ—˜์€ ๋‹จ์ผ ๋ฐ ์ด์ค‘ ์ž…๋ ฅ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋“ค๊ณผ์˜ ์„ฑ๋Šฅ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ตฌ์กฐ์˜ ํƒ€๋‹น์„ฑ๊ณผ ํšจ๊ณผ๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ์œ ํ˜•์— ๋”ฐ๋ผ ๋‹จ์ผ ์ž…๋ ฅ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๊ณผ ์ด์ค‘ ์ž…๋ ฅ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๊ณ  ์„ฑ๋Šฅ ๋น„๊ต ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹คํ—˜์˜ ์‹ ๋ขฐ๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ ์‹คํ—˜์€ 5ํšŒ ๋ฐ˜๋ณต ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ ํ‰๊ท ๊ฐ’์„ ํ‘œ 2์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€๋Š” RMSE, MAE, Rยฒ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์‹ (9)~(11)๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ์˜ ๋ณต์žก๋„๋Š” FLOPs๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ํ•˜์˜€๋‹ค.

(9)
$=\sqrt{\dfrac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y_{i}})^{2}}$
(10)
$MAE =\dfrac{๏ผ‘}{๏ฝŽ}\sum_{i ๏ผ1}^{n}\vert y_{i}-\hat{y_{i}\vert}$
(11)
$R^{2}= 1-\dfrac{\sum_{i=1}^{n}(y_{i}-\hat{y_{i}})^{2}}{\sum_{i=1}^{n}(y_{i}-\overline{y_{i}})^{2}}$

๊ทธ๋ฆผ 8๊ณผ ํ‘œ 2์— ์ œ์‹œ๋œ SOH ์˜ˆ์ธก ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ MMF ๋ชจ๋ธ์ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ๋ณตํ•ฉ์  ํŠน์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•จ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๋‹จ์ผ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, MLP๋Š” ๊ทธ๋ฆผ 8(a)์™€ ๊ฐ™์ด point wise HI๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ „๋ฐ˜์ ์ธ SOH์˜ ํ‰๊ท  ์ถ”์„ธ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์ถ”์ข…ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, point wise ๋ฐ MLP์˜ ๊ตฌ์กฐ์ ์ธ ํŠน์„ฑ์œผ๋กœ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™” ๊ตฌ๊ฐ„์ด๋‚˜ ํŠ€๋Š” ๊ฐ’์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜์—ฌ ๊ทธ๋ฆผ 9์™€ ๊ฐ™์€ ์ถ”์ • ์˜ค์ฐจ ๋ถ„ํฌ๊ฐ€ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด๋Š” ๊ฐ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๊ด€๊ณ„์„ฑ์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. LSTM์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐ„์  ํ๋ฆ„์— ๋”ฐ๋ฅธ ์ •๋ณด๋ฅผ ํ•™์Šตํ•˜์—ฌ ์˜ˆ์ธก ๊ณก์„ ์˜ ์ „์ฒด ํ˜•ํƒœ๋ฅผ ์ผ์ • ์ˆ˜์ค€ ์ด์ƒ ์žฌํ˜„ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ดˆ๊ธฐ ์ž…๋ ฅ๊ฐ’์˜ ์˜ํ–ฅ์— ๋”ฐ๋ผ ์˜ˆ์ธก ๊ณก์„ ์ด ๊ณผ๋Œ€ ๋˜๋Š” ๊ณผ์†Œ ์ถ”์ •๋˜๋Š” ๊ฒฝํ–ฅ์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๊ทธ๋ฆผ 8(b)๋ฅผ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค.

ํ‘œ 2 SOH ์˜ˆ์ธก ๊ฒฐ๊ณผ ๋น„๊ตํ‘œ

Table 2 SOH Prediction Results Comparison Table

input data

algorithm

RMSE($10^{-2}$) MAE($10^{-2}$) $R^{2}$

FLOPs

point

sequence

heatmap

โœ“

MLP

0.885$\pm $0.050 0.715$\pm $0.015 0.955 $\pm $0.001

9.441K

โœ“

LSTM

1.190$\pm $0.100 0.935$\pm $0.035 0.911$\pm $0.013

6.420M

โœ“

CNN

0.870$\pm $0.050 0.570$\pm $0.043 0.950$\pm $0.009

31.474G

โœ“

โœ“

MLP+LSTM

0.743$\pm $0.167 0.743$\pm $0.127 0.937$\pm $0.025

0.644G

โœ“

โœ“

MLP+CNN

0.540$\pm $0.145 0.370$\pm $0.112 0.970$\pm $0.172

31.47G

โœ“

โœ“

LSTM+CNN

0.870$\pm $0.045 0.670$\pm $0.058 0.955$\pm $0.007

32.118G

โœ“

โœ“

โœ“

MMF

0.430$\pm $0.010 0.300$\pm $0.012 0.985$\pm $0.002

32.121G

๊ทธ๋ฆผ 8. SOH ์ถ”์ • ๊ฒฐ๊ณผ ๊ทธ๋ž˜ํ”„ (a) MLP, (b) LSTM, (c) CNN, (d) MMF

Fig. 8. SOH estimation result graph (a) MLP, (b) LSTM, (c) CNN, (d) MMF

../../Resources/kiee/KIEE.2025.74.11.1926/fig8.png

LSTM์ด RNN์— ๋น„ํ•ด ์žฅ๊ธฐ ์‹œํ€€์Šค๋ฅผ ๋ณด๋‹ค ์•ˆ์ •์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋‚˜, ๋ณด์กด ๊ฐ€๋Šฅํ•œ ์ •๋ณด์˜ ์–‘์—๋Š” ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ์ƒ์—์„œ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ๊ฐ„์— ๋Œ€ํ•ด์„œ๋Š” ์„ธ๋ถ€์ ์ธ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ํŠนํžˆ, ์ดˆ๊ธฐ ์ถ”์ •๊ฐ’์ด ์ •ํ™•ํ• ์ˆ˜๋ก ๊ณก์„ ์˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ฐ˜์‘์ด ๋ถ€์กฑํ•˜์—ฌ ๊ทธ๋ฆผ 9(b)์™€ ๊ฐ™์ด ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค.

CNN ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜์˜ ๊ตญ์†Œ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ํŠน์ง•์ด ์žˆ์–ด ๊ทธ๋ฆผ 8(c)์™€ ๊ฐ™์ด ํ›„๋ฐ˜๋ถ€ SOH ์ €ํ•˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ๋ฏผ๊ฐํ•œ ํŠน์„ฑ์ด ์žˆ์–ด ์˜ˆ์ธก ๊ณก์„ ์—์„œ ์ง„๋™์ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚˜๋ฉฐ ๊ทธ๋ฆผ 9(c)์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋ฐ”์™€ ๊ฐ™์ด ๋…ธ์ด์ฆˆ์— ๋”ฐ๋ฅธ ์ถ”์ • ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ ๋‹จ์ผ ๋ชจ๋ธ์€ ํŠน์ • ์ž…๋ ฅ ํ˜•ํƒœ์— ๋Œ€ํ•œ ๊ฐ•์ ์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์œผ๋‚˜, ๊ณก์„ ์˜ ๊ธ‰๋ณ€ ๊ตฌ๊ฐ„ ๋˜๋Š” ๋…ธ์ด์ฆˆ๊ฐ€ ํฌํ•จ๋œ ํ™˜๊ฒฝ์—์„œ๋Š” ์˜ˆ์ธก ์•ˆ์ •์„ฑ๊ณผ ์ •๋ฐ€๋„ ์ธก๋ฉด์—์„œ ๊ณตํ†ต์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

MLP+LSTM ์œตํ•ฉ ๋ชจ๋ธ์˜ ์ถ”์ • ์„ฑ๋Šฅ์€ ์‹œ๊ณ„์—ด์˜ ์ „๋ฐ˜์ ์ธ ์ถ”์„ธ์™€ point wise ๊ธฐ๋ฐ˜์˜ ์ „์—ญ ์ •๋ณด๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ธฐ์กด LSTM ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ Rยฒ๊ฐ€ 2.8% ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LSTM์˜ ์ดˆ๊ธฐ๊ฐ’ ์˜์กด์„ฑ์œผ๋กœ ์ธํ•ด SOH ์ถ”์ • ์•ˆ์ •์„ฑ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•˜์˜€๋‹ค. MLP+CNN ์œตํ•ฉ ๋ชจ๋ธ์€ MLP์˜ ์ „์—ญ์ ์ธ ํŠน์„ฑ๊ณผ CNN์˜ ๊ตญ์†Œ ํŒจํ„ด ํ•™์Šต ๋Šฅ๋ ฅ์ด ์กฐํ™”๋ฅผ ์ด๋ฃจ๋ฉฐ ๊ธฐ์กด MLP ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ Rยฒ๊ฐ€ 1.5% ํ–ฅ์ƒ๋˜์—ˆ์ง€๋งŒ, CNN์˜ ๋…ธ์ด์ฆˆ ๋ฐ˜์‘ ํŠน์„ฑ์ด ์—ฌ์ „ํžˆ ์˜ˆ์ธก๊ฐ’์— ๋Œ€ํ•œ ์ง„๋™์„ ์œ ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.

๋ฐ˜๋ฉด, ๊ฐ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์— ๋”ฐ๋ฅธ ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ MMF ๋ชจ๋ธ์€ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ํ˜•ํƒœ(point, sequence, heatmap image)์˜ ํŠน์„ฑ์„ ์ƒํ˜ธ ๋ณด์™„ํ•˜์—ฌ, ๊ณก์„ ์˜ ์ „์ฒด ์ถ”์„ธ, ๊ตญ์†Œ ์ •๋ณด, ์‹œ๊ณ„์—ด ๋ณ€ํ™”๊นŒ์ง€ ๊ท ํ˜• ์žˆ๊ฒŒ ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 8(d)๋ฅผ ํ†ตํ•ด ์•ˆ์ •์„ฑ๊ณผ ์ •๋ฐ€๋„ ๋ชจ๋‘์—์„œ ๊ธฐ์กด ๋‹จ์ผ ๋ชจ๋ธ ๋ฐ ์ด์ค‘ ์œตํ•ฉ ๋ชจ๋ธ ๋Œ€๋น„ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ทธ๋ฆผ 9(d)์™€ ๊ฐ™์ด ์ถ”์ • ์˜ค์ฐจ๊ฐ€ ๋‚ฎ๊ฒŒ ๋ถ„ํฌํ•˜์—ฌ ์ถ”์ • ์ •ํ™•๋„๊ฐ€ ํ–ฅ์ƒ๋œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹จ์ผ CNN ๋ชจ๋ธ์— ๋น„ํ•ด RMSE์™€ MSE ๊ฐ๊ฐ 50.6%, 47.3% ๊ฐ€๋Ÿ‰ ๊ฐ์†Œํ•˜์—ฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋ณด์˜€์œผ๋ฉฐ, FLOPs๋Š” 1.9% ์ฆ๊ฐ€ํ•˜์˜€๋‹ค.

๊ธฐ์กด ๋‹จ์ผ ๋ชจ๋ธ ์ค‘ ๋ฐฐํ„ฐ๋ฆฌ ์ถ”์ •์— ๋งŽ์ด ํ™œ์šฉ๋˜๋Š” LSTM๊ณผ ๋น„๊ตํ•˜์—ฌ Rยฒ๊ฐ€ 8.5% ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด์ค‘ ์œตํ•ฉ ๋ชจ๋ธ ์ค‘ MLP+LSTM ๋ชจ๋ธ์— ๋น„ํ•ด์„œ๋Š” Rยฒ๊ฐ€ 4.9% ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ์ด๋Š” ๋‹จ์ผ ๋ชจ๋ธ ๋ฐ ์ด์ค‘ ์œตํ•ฉ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” MMF ๋ชจ๋ธ์˜ ์ „๋ฐ˜์ ์ธ ์ถ”์ • ์ •ํ™•๋„๊ฐ€ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•จ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ, ์‹คํ—˜ ๋ฐ˜๋ณต ๊ฐ„ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ 0.002๋กœ ๊ฐ€์žฅ ์ž‘์œผ๋ฏ€๋กœ ๊ธฐ์กด ๋‹จ์ผ ๋ชจ๋ธ ๋Œ€๋น„ ๋›ฐ์–ด๋‚œ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ ๊ฒƒ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ ํ˜„์ €ํžˆ ์ค„์–ด๋“  ์‹คํ—˜ ์˜ค์ฐจ ํŽธ์ฐจ๋ฅผ ํ†ตํ•ด ๋ฐ˜๋ณต ์‚ฌ์ดํด์—์„œ์˜ ์˜ค์ฐจ ๋ˆ„์ ์„ ์ค„์—ฌ ๋ชจ๋ธ์˜ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ์ž…์ฆํ•˜์˜€์œผ๋ฉฐ, ์žฅ๊ธฐ์ ์ธ ๋ชจ๋ธ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์—์„œ๋„ ๊ฐ€์žฅ ๋†’์€ ์ž ์žฌ๋ ฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ 9. SOH ์ถ”์ • ์˜ค์ฐจ ๋ถ„ํฌ (a) MLP, (b) LSTM, (c) CNN, (d) MMF

Fig. 9. SOH estimation error distribution (a) MLP, (b) LSTM, (c) CNN, (d) MMF

../../Resources/kiee/KIEE.2025.74.11.1926/fig9.png

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐฐํ„ฐ๋ฆฌ ์ƒํƒœ ์ถ”์ •์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ MMF ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ SOH ์˜ˆ์ธก ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ point, sequence, heatmap ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ๊ฐ ์ฒ˜๋ฆฌํ•˜๋Š” MLP, LSTM, CNN ๊ตฌ์กฐ๋ฅผ ๋ณ‘๋ ฌ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ํ†ตํ•ฉ์ ์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด์˜ ๋‹จ์ผ ๋˜๋Š” ์ด์ค‘ ์œตํ•ฉ ๋ชจ๋ธ๋“ค์ด ๊ฐ€์ง€๋Š” ์ •ํ™•๋„ ๋ฐ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ MMF ๋ชจ๋ธ์€ RMSE, MAE, Rยฒ ์ง€ํ‘œ์—์„œ ๊ฐ๊ฐ 0.007, 0.006, 0.074๋งŒํผ ๊ฐœ์„ ๋˜์–ด ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ํ†ตํ•ด MLP, LSTM, CNN์ด ๊ฐ–๋Š” ํŠน์žฅ์ ์„ ์œตํ•ฉ์ ์œผ๋กœ ์—ฐ๊ณ„ํ•˜์—ฌ SOH ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํ–ฅํ›„ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ณตํ•ฉ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ์˜ˆ์ธก ๋ฐ ๊ณ ์žฅ ์ง„๋‹จ ๋ถ„์•ผ์— ์žˆ์–ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” 2025๋…„๋„ ์‚ฐ์—…ํ†ต์ƒ์ž์›๋ถ€๊ฐ€ ์ง€์›ํ•œ โ€œ35kW๊ธ‰ ๋ฐฐํ„ฐ๋ฆฌ ๊ต์ฒดํ˜• ๋†์—…์šฉ ์ „๋™ํ™” ํ”Œ๋žซํผ ๊ธฐ์ˆ ๊ฐœ๋ฐœ (๊ณผ์ œ๋ฒˆํ˜ธ: RS-2024-00423034)โ€๊ณผ, โ€œ์ „๊ธฐ์ฐจ ์žฌ์ œ์กฐ ๋ฐฐํ„ฐ๋ฆฌ ์•ˆ์ „์„ฑ ํ‰๊ฐ€์‹œ์Šคํ…œ ๊ตฌ์ถ•(๊ณผ์ œ๋ฒˆํ˜ธ: RS-2024-00436689)โ€ ์˜ํ•˜์—ฌ ์ด๋ฃจ์–ด์ง„ ์—ฐ๊ตฌ๋กœ์„œ, ๊ด€๊ณ„๋ถ€์ฒ˜์— ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

References

1 
H. Lin, T. Liang and S. Chen, โ€œEstimation of battery state of health using probabilistic neural network,โ€ IEEE transactions on industrial informatics, vol. 9, no. 2, pp. 679-685, 2012.DOI:10.1109/TII.2012.2222650DOI
2 
Wang, Yujie, et al., โ€œA comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,โ€ Renewable and Sustainable Energy Reviews 131, 2020.DOI:10.1016/j.rser.2020.110015DOI
3 
W. Jingwen, G. Dong and Z. Chen, โ€œRemaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression,โ€ IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5634-5643, 2017.DOI:10.1109/TIE.2017.2782224DOI
4 
O. Demirci, S. Taskin, E. Schalts, B.A. Demirci, โ€œReview of battery state estimation methods for electric vehicles-Part II: SOH estimation,โ€ Journal of Energy Storage, vol. 96, 2024.DOI:10.1016/j.est.2024.112703DOI
5 
Dini, Pierpaolo, A. Colicelli and S. Saponara, โ€œReview on modeling and soc/soh estimation of batteries for automotive applications,โ€ Batteries, vol. 10, no. 1, 2024.DOI:10.3390/batteries10010034DOI
6 
Wang, H., Pourmousavi, S. A., Soong, W. L., Zhang, X. & Yuan, R, โ€œAccurate battery models matter: Improving battery performance assessment using a novel energy management architecture,โ€ Journal of Power Sources, vol. 631, 2025.DOI:10.1016/j.jpowsour.2025.236216DOI
7 
V. S, H. Che, J. Selvaraj, K. Tey and J. Lee, โ€œState of Health (SoH) estimation methods for second life lithium-ion battery-Review and challenges,โ€ Applied Energy, vol. 369, 2024.DOI:10.1016/j.apenergy.2024.123542DOI
8 
X. Yao, G. Chen, L. Hu and M. Pecht, โ€œA multi-model feature fusion model for lithium-ion battery state of health prediction,โ€ Journal of Energy Storage, vol. 56, 2022.DOI:10.1016/j.est.2022.106051DOI
9 
C. Cheng, R. Xiong, R. Yang and H. Li, โ€œA novel data-driven method for mining battery open-circuit voltage characterization,โ€ Green Energy and Intelligent Transportation, vol. 1, no. 1, 2022DOI:10.1016/j.geits.2022.100001DOI
10 
Y. Li, G. Gao, K. Chen, S He, K. Liu, D. Xin, Y. Lu, Z. Long and G. Wu, โ€œState-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model,โ€ Energy, vol. 319, 2025DOI:10.1016/j.energy.2025.135163DOI
11 
T. Oji, Y. Zhou, S. Ci, F. Kang, X. Chen and X. Liu, โ€œData-driven methods for battery soh estimation: Survey and a critical analysis,โ€ Ieee Access, vol. 9, 2021DOI:10.1109/ACCESS.2021.3111927DOI
12 
Z. Lijun, J. Tuo, Y. Shiha and L. Guanchen, โ€œAccurate prediction approach of SOH for lithium-ion batteries based on LSTM method,โ€ Batterie,s vol. 9, no. 3 2023.DOI:10.3390/batteries9030177DOI
13 
M. Park, J. Lee and B. Kim, โ€œSOH estimation method of lithium ion battery using Continuous Wavelet Transform and CNN,โ€ KIEE Conf, pp. 167-168, 2021.URL
14 
M. Anurag and A. G. Thosar, โ€œRNN and CNN Based Ensemble Models for State-of-Health Prediction of Li-Ion Batteries,โ€ IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT), pp. 128-132, 2024.DOI:10.1109/ICISSGT58904.2024.00035DOI
15 
S. Sridharan, S. Venkataraman, M. Raman and S. P. Raja, โ€œEarly prognostics of remaining useful life in lithium ion batteries using hybrid LSTM-Att-MLP model with fusing aging information,โ€ Journal of The Electrochemical Society, vol. 171, no. 8, 2024.DOI:10.1149/1945-7111/ad6d94DOI
16 
K. Severson, P. Attis, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. Chen, M. Aykol, P. Herring, D. Fraggedakis, M. Bazant, S. Harris, W. Chueh and R. Braatz, โ€œData-driven prediction of battery cycle life before capacity degradation,โ€ Nature Energy, vol. 4, no. 5 pp. 383-391, 2019.DOI:10.1038/s41560-019-0356-8DOI
17 
Stroe, D. Ioan and E. Schaltz, โ€œLithium-ion battery state-of-health estimation using the incremental capacity analysis technique,โ€ IEEE Transactions on Industry Applications, vol. 56, no. 1, pp.678-685 2019.DOI:10.1109/TIA.2019.2955396DOI

์ €์ž์†Œ๊ฐœ

๊น€์ฐจ๋‹ˆ(Chani Kim)
../../Resources/kiee/KIEE.2025.74.11.1926/au1.png

She received B.S degrees in electrical and electronic engineering from University of Ulsan, Korea in 2024. and She has been started master's degree at the same university. Her research interests include data science and energy system.

์„ค์ˆ˜์ง„(Sujin Seol)
../../Resources/kiee/KIEE.2025.74.11.1926/au2.png

She received B.S, and M.S degrees in electricity and electrical engineering from University of Ulsan, Ulsan, Korea, in 2020 and 2023 respectively. Now She has been started PhDโ€™s degree at the same university. Her research interests include artificial neural networks and data science.

๊น€๋ณ‘์šฐ(Byeong-Woo Kim)
../../Resources/kiee/KIEE.2025.74.11.1926/au3.png

He received the B.E M.E and Ph.D degree in Precision Mechanical Engineering from Hanyang University. He worked at KOSAKA Research Center in 1989. He worked at KATECH electrical technology Research Center from 1994 to 2006. Now he is a professor in the School of electrical engineering in University of Ulsan, Ulsan, South Korea from 2006. His current research interests include advanced driving assistance system (ADAS), and autonomous emergency braking (AEB) system.