• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical and Electronic Engineering, konkuk University, Republic of Korea.)



Photovoltaic Generation, XGBoost, Renewable Energy Forecast, Inverse Distance Weighting, Loss function

1. ์„œ ๋ก 

์ œ11์ฐจ ์ „๋ ฅ์ˆ˜๊ธ‰๊ธฐ๋ณธ๊ณ„ํš์— ๋”ฐ๋ฅด๋ฉด โ€˜38๋…„ ์žฌ์ƒ์—๋„ˆ์ง€ ๋ฐœ์ „์„ค๋น„๋Š” 121.9GW๋กœ ์ด๋Š” ์ •๊ฒฉ์šฉ๋Ÿ‰ ๊ธฐ์ค€ ์ „์›๊ตฌ์„ฑ์˜ 45.5%๋ฅผ ์ฐจ์ง€ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค [1]. ์ด์™€ ํ•จ๊ป˜ ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„๊ฐ€ ์ „๋ ฅ๊ณ„ํ†ต์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์žฌ์ƒ์—๋„ˆ์ง€ ๋ฐœ์ „์„ค๋น„์˜ ์ฆ๊ฐ€๋กœ ์ „๋ ฅ๊ณ„ํ†ต์€ ๋‚ฎ ์‹œ๊ฐ„๋Œ€ ๊ณผ์ž‰๋ฐœ์ „๊ณผ ์ผ๋ชฐ ๋ฌด๋ ต ๊ธ‰๊ฒฉํ•œ ๊ณต๊ธ‰์ €ํ•˜์— ๋Œ€์‘ํ•ด์•ผ ํ•œ๋‹ค. ๋•์ปค๋ธŒ ํ˜„์ƒ์€ ๋‚ฎ ์‹œ๊ฐ„๋Œ€ ๊ณต๊ธ‰๊ณผ์ž‰์œผ๋กœ ์ธํ•œ ์ถœ๋ ฅ์ œํ•œ๊ณผ ์ผ๋ชฐ ์ดํ›„์˜ ๊ฐ€ํŒŒ๋ฅธ ์ƒํ–ฅ ๋žจํ•‘๋ฅผ ๋™๋ฐ˜ํ•˜๋ฉฐ, ์ผ๋ณ„ ์šด์˜๊ณ„ํš๊ณผ ์‹ค์‹œ๊ฐ„ ์˜ˆ๋น„๋ ฅ ๋ฐฐ๋ถ„์˜ ๋‚œ์ด๋„๋ฅผ ๋†’์ธ๋‹ค [2]. ์ด๋Ÿฌํ•œ ์šด์˜ ๋ฆฌ์Šคํฌ๋Š” ํ”ผํฌ ์ˆ˜์ค€๊ณผ ๋žจํ•‘ ๊ตฌ๊ฐ„์˜ ์˜ˆ์ธก์˜ค์ฐจ๊ฐ€ ๋ˆ„์ ๋ ์ˆ˜๋ก ํ™•๋Œ€๋˜๋ฏ€๋กœ, ํ”ผํฌ ์ถ”์ข…๊ณผ ๋žจํ•‘ ์ถ”์ข…์„ ์œ„ํ•ด ํ”ผํฌ๊ตฌ๊ฐ„ ๋ฐ ๋žจํ•‘๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์žฌ์ƒ์—๋„ˆ์ง€ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์ด ์š”๊ตฌ๋œ๋‹ค. ๋†’์€ ์žฌ์ƒ์—๋„ˆ์ง€ ์นจํˆฌ์œจ์—์„œ ๊ธ‰๊ฒฉํ•œ ์ƒยทํ•˜ํ–ฅ ๋žจํ•‘์€ ๊ณ„ํ†ต ์ฃผํŒŒ์ˆ˜ยท์˜ˆ๋น„๋ ฅ ์šด์šฉ์„ ์–ด๋ ต๊ฒŒ ํ•˜๋ฏ€๋กœ, ๋žจํ•‘ ์‚ฌ๊ฑด์„ ์ง์ ‘ ๊ฒจ๋ƒฅํ•œ ์˜ˆ์ธก๊ณผ ๊ทธ ๋ถˆํ™•์‹ค์„ฑ์˜ ์ •๋Ÿ‰ํ™”๊ฐ€ ์š”๊ตฌ๋˜์–ด, ํ•œ ์‹œ๊ฐ„ ์ „ ํƒœ์–‘๊ด‘ ์˜ˆ์ธก์— ๋Œ€ํ•ด ์‚ฌํ›„ ๋ณด์ •์ ‘๊ทผ์„ ํ†ตํ•ด, ์˜ˆ์ธก์˜ค์ฐจ ์™€ ๋žจํ”„์œจ ์˜ค์ฐจ๋ฅผ ๋™์‹œ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•™์Šตํ•ด ๋žจํ•‘ ํฌ์ฐฉ ์„ฑ๋Šฅ์„ ์œ ์˜๋ฏธํ•˜๊ฒŒ ๊ฐœ์„ ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์„ ํ–‰๋˜์—ˆ๋‹ค [3]. ํŠนํžˆ, ๊ณ„ํ†ต์šด์˜์ž๋Š” ํ•˜๋ฃจ ์ „ ๋ฐœ์ „๊ณ„ํš์‹œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์น˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์œ ์—ฐ์„ฑ์ž์›์„ ์กฐ๋‹ฌํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ๋‹จ๊ณ„์—์„œ๋Š” ์‹ค์ œ ๋žจํ”„ ์š”๊ตฌ๋Ÿ‰์„ ์ถ”์ ํ•œ๋‹ค. ์ด๋•Œ ์˜ˆ์ธก๋ชจ๋ธ์ด ํ”ผํฌ์™€ ๋žจํ•‘ ๊ตฌ๊ฐ„์˜ ์˜ค์ฐจ๋ถ„ํฌ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์ œ์–ดํ• ์ˆ˜๋ก ์˜ˆ๋น„๋ ฅ ์š”๊ตฌ๋Ÿ‰ ์‚ฐ์ •์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ๊ฐ์†Œํ•˜๊ณ , ๋ถˆํ•„์š”ํ•œ ์ถœ๋ ฅ์ œํ•œ ๋˜๋Š” ๊ฐ€๊ฒฉ ๊ธ‰๋“ฑ๊ณผ ๊ฐ™์€ ๋ถ€์ž‘์šฉ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ณ„ํ†ต๋น„์šฉ ์ ˆ๊ฐ์˜ ๊ด€์ ์—์„œ ๋Œ€๊ทœ๋ชจ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„์˜ ๋ณด๊ธ‰์ด ์ผ๋ชฐ ์ „ํ›„ ๊ฐ€ํŒŒ๋ฅธ ๊ณต๊ธ‰๊ฐ์†Œ ๋ฐ ์ฃผ๊ฐ„ ๊ณต๊ธ‰๊ณผ์ž‰์— ์˜ํ•œ ์ถœ๋ ฅ์ œ์–ด ๋“ฑ์— ๋”ฐ๋ผ, ์ผ๋ณ„ ์šด์ „๊ณ„ํš๊ณผ ์˜ˆ๋น„๋ ฅ ์กฐ๋‹ฌ์„ ์ขŒ์šฐํ•˜๋Š” ํ•˜๋ฃจ ์ „ ์˜ˆ์ธก ์ •ํ™•๋„์˜ ๊ฒฝ์ œ์  ๊ฐ€์น˜๋ฅผ ํ‰๊ฐ€ยท๊ฐœ์„ ํ•˜๋ ค๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ํƒœ์–‘๊ด‘ ์นจํˆฌ์œจ๊ณผ ํ•˜๋ฃจ ์ „ ์˜ˆ์ธก ๊ฐœ์„  ์ˆ˜์ค€์„ ๊ณ„ํ†ต ์ „๋ฐ˜์˜ ์—ฐ๋ฃŒยท๊ธฐ๋™์ •์ง€ยท๋žจํ•‘ยท์ถœ๋ ฅ์ œํ•œ ์ง€ํ‘œ์™€ ์—ฐ๊ณ„ํ•ด ๋ถ„์„ํ•˜์—ฌ ์˜ˆ์ธก ๊ฐœ์„ ์€ ๋น ๋ฅธ ๊ธฐ๋™์ด ๊ฐ€๋Šฅํ•œ ์ €ํšจ์œจ ๋ฐœ์ „๊ธฐ์˜ ์˜์กด๋„์™€ ๋žจํ•‘, ๊ธฐ๋™์ •์ง€, ํƒœ์–‘๊ด‘ ์ถœ๋ ฅ์ œํ•œ์„ ๋™์‹œ ์ €๊ฐ์‹œ์ผœ ์—ฐ๊ฐ„ ์šด์˜๋น„์šฉ์„ ์œ ์˜ํ•˜๊ฒŒ ์ž˜๋จ์„ ๋ณด์˜€๋‹ค [4].

ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„๋Š” ์ ์€ ๊ณต๊ฐ„์—์„œ์˜ ์šด์˜, ์„ค์น˜์˜ ์šฉ์ดํ•จ ๋“ฑ์˜ ์ด์œ ๋กœ ์†Œ๊ทœ๋ชจ๋ฐœ์ „์„ค๋น„๊ฐ€ ๋„“์€ ์ง€์—ญ์— ๋ถ„ํฌํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ์ด๋กœ ์ธํ•ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก ์‹œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„์˜ ์„ค์น˜์žฅ์†Œ์™€ ๊ธฐ์ƒ๊ด€์ธก์†Œ์˜ ๊ณต๊ฐ„์  ์ฐจ์ด์— ์˜ํ•œ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ์˜ ์™œ๊ณก์ด ๋ฐœ์ƒํ•˜์—ฌ ์˜ˆ์ธก ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค.

๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๊ธฐ์ƒ ๊ด€์ธก์†Œ์™€ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ ๊ฐ„์˜ ๊ณต๊ฐ„์  ์ฐจ์ด๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ด€์ธก์†Œ์™€ ๋ฐœ์ „์†Œ ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ธก์ •๋˜์ง€ ์•Š์€ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ์˜ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ •ํ•˜๋Š” ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ• (IDW, Inverse Distance Weight)์„ ์ ์šฉํ•œ๋‹ค. ๋ณด๊ฐ„ ๊ฐ•๋„๋ฅผ ๋‹ค๋ฅด๊ฒŒ ์„ค์ •ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•œ ๋’ค, ๋‹ค์ฐจ์› ํŠน์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” XGBoost ๋ชจ๋ธ์˜ ๋‹ค์–‘ํ•œ ์†์‹คํ•จ์ˆ˜๋ฅผ ๋น„๊ตํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณด๊ฐ„๊ธฐ๋ฒ• ๋ฐ ์†์‹คํ•จ์ˆ˜์— ๋”ฐ๋ฅธ ๊ณ„์ ˆ ํŠน์„ฑ๋ณ„ ํ”ผํฌ ๋ฐ ๋žจํ•‘ ๊ตฌ๊ฐ„์˜ ์˜ˆ์ธก ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „์˜ ๊ณต๊ธ‰๊ณผ์ž‰ ๋ฐ ์ˆœ๋ถ€ํ•˜ ์ฆ๊ฐ€์˜ ์–ด๋ ค์›€์„ ๋ณด์™„ํ•ด ์›ํ™œํ•œ ์ „๋ ฅ์ˆ˜๊ธ‰ ๋ฐ ๊ณ„ํ†ต๋น„์šฉ ๊ฐ์†Œ์— ๊ธฐ์—ฌํ•˜๊ณ ์ž ํ•œ๋‹ค.

๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„์˜ ๋ฐœ์ „๋Ÿ‰์ด ๋‚ฎ์€ ์‹œ๊ฐ„๋Œ€์˜ ์„ค๋น„์šฉ๋Ÿ‰์— ๋Œ€ํ•œ ์ •๊ทœํ™”๋กœ ์ธํ•œ ์˜ˆ์ธก๋ชจ๋ธ์˜ ์„ฑ๋Šฅ๊ณผ ํ‰๊ฐ€์ง€ํ‘œ ๊ฐ„ ์™œ๊ณก์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•ด๋‹น ์„ค๋น„์šฉ๋Ÿ‰์˜ ์ตœ๋Œ€ ๋ฐœ์ „๋Ÿ‰์œผ๋กœ ์˜ค์ฐจ๋ฅผ ์ •๊ทœํ™”ํ•˜๋Š” ์ •๊ทœํ™”๋œ ํ‰๊ท ์ ˆ๋Œ€ ์˜ค์ฐจ (nMAE, normalized Mean Absolute Error)๋ฅผ ํ‰๊ฐ€์ง€ํ‘œ๋กœ ์ฑ„ํƒํ•ด ์˜ˆ์ธก ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค [5].

2. ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์„ ์œ„ํ•œ ๊ธฐ๋ฒ•

2.1 ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก ๋ชจ๋ธ

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์„ ์œ„ํ•ด Gradient Boosting ๊ธฐ๋ฐ˜์˜ ๊ฒฐ์ • ํŠธ๋ฆฌ ์•™์ƒ๋ธ” ๊ธฐ๋ฒ•์ธ XGBoost ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. XGBoost๋Š” ์˜ˆ์ธก๊ฐ’๊ณผ ์‹ค์ œ๊ฐ’์˜ ์ฐจ์ด์ธ ์ž”์ฐจ ๊ธฐ๋ฐ˜ ํ•™์Šต์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์—ฌ ์˜ค์ฐจ๋ฅผ ์ค„์—ฌ๊ฐ€๋Š” ๋ฐฉ์‹์˜ ๊ฐ€๋ฒ•๋ชจํ˜•์ด๋ฉฐ, ๋‹ค์ฐจ์› ๋ณ€์ˆ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ณ„์‚ฐํ•จ๊ณผ ๋™์‹œ์— ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์„ ๋น„๋กฏํ•œ ๋‹ค์–‘ํ•œ ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค [6-9].

XGBoost๋Š” ๊ฐ ๋ฐ˜๋ณต ๋‹จ๊ณ„์—์„œ ์ƒˆ๋กœ์šด ํšŒ๊ท€ ํŠธ๋ฆฌ๋ฅผ ์ถ”๊ฐ€ํ•˜๊ณ , ์ž…๋ ฅ๋œ ์ธ์Šคํ„ด์Šค์— ๋Œ€ํ•œ ์˜ˆ์ธก๊ฐ’์€ ์‹ (1)๊ณผ ๊ฐ™์ด ๊ฐ ํŠธ๋ฆฌ์˜ ์˜ˆ์ธก๊ฐ’์„ ํ•ฉ์‚ฐํ•˜์—ฌ ํ‘œํ˜„๋˜๋ฉฐ ์ด์— ๋Œ€ํ•œ ๋ชจ์‹๋„๋Š” ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™๋‹ค [10].

๊ทธ๋ฆผ 1. XGBoost์˜ ๊ตฌ์กฐ๋„

Fig. 1. A general architecture of XGBoost

../../Resources/kiee/KIEE.2026.75.1.36/fig1.png
(1)
$ \hat{y_{i}}=\sum_{k=1}^{n}f_{k}(x_{i}),\: f_{k}\in F $

$x_{i}$: $i$ ์ธ์Šคํ„ด์Šค์˜ ํŠน์„ฑ ๋ฒกํ„ฐ

$n$: ํšŒ๊ท€ํŠธ๋ฆฌ์˜ ๊ฐœ์ˆ˜

$f_{k}(x_{i})$: $i$ ์ธ์Šคํ„ด์Šค์— ๋Œ€ํ•œ $k$ ํŠธ๋ฆฌ์˜ ์˜ˆ์ธก๊ฐ’

$F$: ํšŒ๊ท€ํŠธ๋ฆฌ$f$์˜ ๊ณต๊ฐ„

$\hat{y_{i}}$: $i$ ์ธ์Šคํ„ด์Šค์— ๋Œ€ํ•œ ์˜ˆ์ธก๊ฐ’

XGBoost์˜ ๋ชฉ์ ํ•จ์ˆ˜๋Š” ์‹ (2)๊ณผ ๊ฐ™์ด ์†์‹คํ•จ์ˆ˜์™€ ๋ณต์žก์„ฑ์˜ ํ•ฉ์œผ๋กœ ์ •์‹ํ™”๋œ๋‹ค. ์†์‹คํ•จ์ˆ˜๋Š” ์‹ (3)๊ณผ ๊ฐ™์ด ๋ชจ๋“  ์ธ์Šคํ„ด์Šค $x_{i}$์˜ ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE, Mean Squared Error)์˜ ํ•ฉ์œผ๋กœ ์ •์‹ํ™”๋˜๋ฉฐ ๋ณต์žก์„ฑ์€ ์‹ (4)๊ณผ ๊ฐ™์ด ๊ฐ ํšŒ๊ท€ ํŠธ๋ฆฌ์— ๋Œ€ํ•œ ์ •๊ทœํ™” ํ•ญ๋“ค์˜ ์ดํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ํŠธ๋ฆฌ์˜ ๊ตฌ์กฐ์  ๋ณต์žก๋„์™€ ๋ฆฌํ”„ ๊ฐ€์ค‘์น˜ ํฌ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํŽ˜๋„ํ‹ฐ๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ๊ณผ์ ํ•ฉ์„ ์–ต์ œํ•œ๋‹ค.

(2)
$ Obj(\theta)=L(\theta_{n})+ \Omega(\theta_{K}) $
(3)
$ L(\theta_{n})=\sum_{i=1}^{n}l(y_{i},\: \hat{y_{i}}) $
(4)
$ \Omega(\theta_{K})=\sum_{k=1}^{K}\Omega(f_{k}) $

$\theta$: ์ธ์Šคํ„ด์Šค ๋ฐ ํšŒ๊ท€ํŠธ๋ฆฌ์˜ ๋ฒกํ„ฐ

$\theta_{n}$: ๋ชจ๋“  ์ธ์Šคํ„ด์Šค์˜ ๋ฒกํ„ฐ

$\theta_{k}$: ๋ชจ๋“  ํšŒ๊ท€ํŠธ๋ฆฌ์˜ ๋ฒกํ„ฐ

$y_{i}$: $i$ ์ธ์Šคํ„ด์Šค์— ๋Œ€ํ•œ ์‹ค์ œ ๊ฐ’

์˜ˆ์ธก๋ชจ๋ธ์˜ ๋ชฉ์ ํ•จ์ˆ˜๋Š” ํ•™์Šต์„ ๋ฐ˜๋ณตํ•˜๋Š” ๊ณผ์ •์—์„œ ํšŒ๊ท€ํŠธ๋ฆฌ์˜ ๊ฐœ์ˆ˜๋ฅผ 1๊ฐœ์”ฉ ์ฆ๊ฐ€์‹œ์ผœ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ๊ฐœ์„ ํ•ด ๋‚˜๊ฐ„๋‹ค.

(5)
$ \hat{y_{i}^{j}}=\hat{y_{i}}^{j-1}+f_{j}(x_{i}) $

$j$: ๋ชจ๋ธํ•™์Šต ๋ฐ˜๋ณต์‹œํ–‰ ์ธ๋ฑ์Šค

$\hat{y_{i}^{j}}$: $i$ ์ธ์Šคํ„ด์Šค์˜ $j$์‹œํ–‰ ์˜ˆ์ธก๊ฐ’

$\hat{y_{i}}^{j-1}$: $i$ ์ธ์Šคํ„ด์Šค์˜์˜ $j-1$์‹œํ–‰ ์˜ˆ์ธก๊ฐ’

$f_{j}(x_{i})$: $i$ ์ธ์Šคํ„ด์Šค์˜ $j$์‹œํ–‰ ํŠธ๋ฆฌ ์˜ˆ์ธก๊ฐ’

์‹ (5)์€ $j$์‹œํ–‰ ์‹œ ๋ชฉ์ ํ•จ์ˆ˜์˜ ๊ฐœ์„ ๋ฐฉ๋ฒ•์„ ์˜๋ฏธํ•˜๋ฉฐ ์ด๋Š” $j-1$์‹œํ–‰์˜ ์˜ˆ์ธก๊ฐ’์— $j$์‹œํ–‰ ์‹œ ์ƒˆ๋กœ ๋„์ž…ํ•œ ํšŒ๊ท€ํŠธ๋ฆฌ์˜ ์˜ˆ์ธก๊ฐ’์„ ๋”ํ•ด ๊ฐœ์„ ๋œ๋‹ค. ์ด๋ฅผ ์‹ (2)์— ๋Œ€์ž…ํ•ด $j$์‹œํ–‰์— ๋Œ€ํ•œ ๊ฐœ์„ ๋œ ๋ชฉ์ ํ•จ์ˆ˜๋Š” ์‹ (6)๊ณผ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.

(6)
$ Obj^{(t)}=\sum_{i=1}^{n}l(y_{i},\: \hat{y_{i}}^{j-1}+f_{j}(x_{i}))๏ผ‹ \Omega(f_{j}) $

์ƒˆ๋กœ์šด ํŠธ๋ฆฌ์— ๋Œ€ํ•œ ์˜ค์ฐจ๋Š” 2์ฐจ ํ•ญ ๊ทผ์‚ฌ ํ…Œ์ผ๋Ÿฌ์ „๊ฐœ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ XGBoost๋Š” ๋ฐ˜๋ณตํ•™์Šต์„ ํ†ตํ•ด ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ์— ํ…Œ์ผ๋Ÿฌ์ „๊ฐœ์— ๋Œ€ํ•œ ๊ทผ์‚ฌ์˜ค์ฐจ๋ฅผ ํ—ˆ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ์— ์ƒˆ๋กœ์šด ํŠธ๋ฆฌ $f_{j}(x_{i})$์— ๋Œ€ํ•œ ์ž”์ฐจ๋ฅผ ์‹ (7)๊ณผ ๊ฐ™์ด ์ „๊ฐœ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค.

(7)
$ Obj^{(t)}=\sum_{i=1}^{n}[l(y_{i},\: \hat{y_{i}}^{j-1})+g_{i}f_{j}(x_{i})๏ผ‹\dfrac{1}{2}h_{i}f_{j}^{2}(x_{i})] $

$g_{i}$: $x_{i}$์ผ ๋•Œ $f_{j}$์˜ gradient

$h_{i}$: $x_{i}$์ผ ๋•Œ $f_{j}$์˜ hessian

2.2 ์†์‹คํ•จ์ˆ˜์˜ ๋น„๊ต

ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์€ ๊ธฐ์ƒ์กฐ๊ฑด์— ๋”ฐ๋ผ ๊ธ‰๋ณ€ํ•˜๋Š” ํŠน์ง•์„ ๋ณด์ธ๋‹ค. ์ด์— ๋”ฐ๋ผ ํƒœ์–‘์˜ ๋‚จ์ค‘ ์‹œ๊ฐ„๋Œ€์˜ ๊ณต๊ธ‰๊ณผ์ž‰์œผ๋กœ ์ถœ๋ ฅ์ œ์–ด๊ฐ€ ๋นˆ๋ฒˆํžˆ ์ผ์–ด๋‚˜๋ฉฐ, ์ผ๋ชฐ ์ „ํ›„๋กœ ๊ธ‰๊ฒฉํ•œ ๊ณต๊ธ‰๊ฐ์†Œ๋กœ ๋žจํ•‘์ž์› ๋ถ€์กฑ ๋ฌธ์ œ๊ฐ€ ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๊ธฐ์— ํ•˜๋ฃจ ์ „ ๋ฐœ์ „๊ณ„ํš์˜ ์šด์˜ ์˜์‚ฌ๊ฒฐ์ •์„ ์œ„ํ•ด ํ‰๊ท  ์˜ค์ฐจ์˜ ์ตœ์†Œ๊ฐ€ ์•„๋‹Œ ํ”ผํฌ ๋ฐ ๋žจํ•‘ ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ํฌ์ฐฉ์ด ์œ ํšจํ•˜๋‹ค.

XGBoost์˜ ๊ธฐ๋ณธ์ ์ธ ์†์‹คํ•จ์ˆ˜๋Š” ํ‰๊ท ์˜ค์ฐจ์˜ ์ตœ์†Œํ™”๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•˜๊ธฐ์— ์ด๋Ÿฌํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์˜ ๊ธ‰๊ฒฉํ•œ ์ถœ๋ ฅ ๋ณ€๋™์„ฑ์„ ํ•™์Šต์— ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „์˜ ํŠน์ง•์„ ์ž˜ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” MAE(Mean Absolute Error) ๋ฐ Pseudo-Huber ์†์‹คํ•จ์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ ๊ณ„์ ˆ๋ณ„ ํŠน์ง•์— ๋”ฐ๋ฅธ ์†์‹คํ•จ์ˆ˜์˜ ํšจ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค [5].

XGBoost์˜ ๊ธฐ๋ณธ ์†์‹คํ•จ์ˆ˜์ธ MSE๋Š” ์‹ (8)๊ณผ ๊ฐ™์ด ์ •์˜๋˜๋ฉฐ MAE ๋ฐ Pseudo-Huber ์†์‹คํ•จ์ˆ˜๋Š” ๊ฐ๊ฐ ์‹ (9), ์‹ (10)์œผ๋กœ ์ •์˜๋œ๋‹ค.

(8)
$ L_{MSE}(y-\hat{y})=\dfrac{1}{2}(y-\hat{y})^{2} $

MSE๋Š” ์กฐ๊ฑด๋ถ€ ํ‰๊ท ์„ ์ถ”์ •ํ•˜๋„๋ก ํ•™์Šต์„ ์œ ๋„ํ•˜๊ณ , ํฐ ์ž”์ฐจ์— ์ œ๊ณฑ ๊ฐ€์ค‘์„ ๋ถ€์—ฌํ•˜์—ฌ ์˜ค์ฐจ๊ฐ€ ๋น„๊ต์  ์ •๊ทœ์ ์ด๊ณ , ์ผ์ •ํ•œ ์ถœ๋ ฅ์ด ์œ ์ง€๋˜๋Š” ์ƒํ™ฉ์—์„œ ์œ ๋ฆฌํ•˜๋‹ค. ๋‹ค๋งŒ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์€ ์ผ์‚ฌ๋Ÿ‰ ๊ธ‰๋ณ€์œผ๋กœ ํ”ผํฌ ๊ตฌ๊ฐ„์˜ ๋ถ„์‚ฐ์ด ์ปค์ง€๋Š” ํŠน์ง•์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ‘œ๋ณธ ๋‚ด ์ ์€ ๋น„์ค‘๊ณผ ๋น„ํ”ผํฌ ์‹œ๊ฐ„๋Œ€์˜ ์ž”์ฐจ ํ•ฉ์ด ๋” ํฐ ๊ฐ€์ค‘์„ ์ฐจ์ง€ํ•จ์ด ๋”ํ•ด์ ธ ์ „์ฒด MSE ์ตœ์†Œํ™”๋ฅผ ์œ„ํ•ด ํ”ผํฌ์‹œ๊ฐ„๋Œ€์˜ ๋ฐœ์ „๋Ÿ‰์„ ํ‰ํƒ„ํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํ”ผํฌ ๊ณผ์†Œ์˜ˆ์ธก ๋ฐ ๊ธ‰๊ฒฉํ•œ ๋žจํ•‘ ํฌ์ฐฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค.

(9)
$ L_{MAE}= \vert y-\hat{y}\vert $

MAE๋Š” ์กฐ๊ฑด๋ถ€ ์ค‘์•™๊ฐ’์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๊ณ , ์ž”์ฐจ์— ์„ ํ˜• ๊ฐ€์ค‘์„ ์ฃผ์–ด ์ด์ƒ์น˜์— ๊ฐ•๊ฑดํ•˜๋‹ค. ํƒœ์–‘๊ด‘ ๋ฐœ์ „์˜ ๊ฒฝ์šฐ, ๊ณ„์ ˆ๋ณ„, ์‹œ๊ฐ„๋Œ€๋ณ„๋กœ ๋ถ„์‚ฐ์ด ๋‹ฌ๋ผ์ง€๊ณ  ํ”ผํฌ ๊ตฌ๊ฐ„์—์„œ ํฐ ์ž”์ฐจ๊ฐ€ ์‚ฐ๋ฐœ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ํŠน์ง•์„ ๋ณด์ด๋ฉฐ, ์ด์— ๋Œ€ํ•ด ์†Œ์ˆ˜์˜ ํฐ ์ž”์ฐจ๊ฐ€ ์ „์ฒด ํ•™์Šต์„ ์™œ๊ณกํ•˜๋Š” ๊ฒƒ์„ ์–ต์ œํ•จ์œผ๋กœ์จ ํ”ผํฌ ๋ฐ ๋žจํ•‘ ์‹œ๊ธฐ์˜ ํŒจํ„ด์„ ์•ˆ์ •์ ์œผ๋กœ ํฌ์ฐฉํ•˜๊ฒŒ ๋„์™€์ค€๋‹ค.

(10)
$ L_{PH,\: \delta}(y-\hat{y})=\delta^{2}(\sqrt{1+(y-\hat{y})^{2}} $

$\delta$: Huber parameter

Pseudo-Huber๋Š” ์ž‘์€ ์ž”์ฐจ์— ๋Œ€ํ•ด ์ œ๊ณฑ์˜ ๊ฐ€์ค‘์น˜๋ฅผ, ํฐ ์ž”์ฐจ์— ๋Œ€ํ•ด ์ ˆ๋Œ€๊ฐ’ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ์†Œ์ž”์ฐจ ์˜์—ญ์—์„œ๋Š” MSE์ฒ˜๋Ÿผ ์ •๋ฐ€ํ•œ ํ‰๊ท  ์ ํ•ฉ๊ณผ ์—ฐ์† ์ด๊ณ„๋ฏธ๋ถ„์„ ํ™•๋ณดํ•˜๊ณ , ๋Œ€์ž”์ฐจ ์˜์—ญ์—์„œ๋Š” MAE์ฒ˜๋Ÿผ ๊ณผ๋„ํ•œ ํŽ˜๋„ํ‹ฐ ์ฆ๊ฐ€๋ฅผ ์–ต์ œํ•ด ํ”ผํฌ ๋ฐ ๋žจํ•‘ ์‹œ๊ฐ„๋Œ€์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. Huber parameter์ธ $\delta$๊ฐ€ ๋„ˆ๋ฌด ํฌ๋ฉด MSE์— ์ˆ˜๋ ดํ•˜์—ฌ ๊ฐ•๊ฑด์„ฑ์ด ์•ฝํ™”๋˜๋ฉฐ, ๋„ˆ๋ฌด ์ž‘์„ ๊ฒฝ์šฐ MAE์— ์ˆ˜๋ ดํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” XGBoost๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ ๊ธฐ๋ณธ ๊ฐ’์ธ 1.0์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

2.3 ์˜ˆ์ธก๋ชจ๋ธ ์„ฑ๋Šฅ์ง€ํ‘œ

๋จธ์‹ ๋Ÿฌ๋‹ ์„ฑ๋Šฅ ๋ถ„์„ ์‹œ ์„œ๋กœ ๋‹ค๋ฅธ ํŠน์„ฑ์„ ์ง€๋‹Œ ๋ฐ์ดํ„ฐ์…‹ ๊ฐ„ ์˜ˆ์ธก ์˜ค์ฐจ๋ฅผ ๊ฐ๊ด€์ ์œผ๋กœ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜์ ์œผ๋กœ ์„ฑ๋Šฅ์ง€ํ‘œ๋ฅผ ์‹ค์ œ ๊ด€์ธก๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์ •๊ทœํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •๊ทœํ™” ๋ฐฉ์‹์€ ๋ฐ์ดํ„ฐ์…‹ ๊ฐ„์˜ ์ ˆ๋Œ€๋Ÿ‰ ์ฐจ์ด๋ฅผ ๋ณด์™„ํ•˜์—ฌ ๋™์ผํ•œ ์Šค์ผ€์ผ์—์„œ ์˜ค์ฐจ๋ฅผ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ค€๋‹ค. ํƒœ์–‘๊ด‘ ๋ฐœ์ „์˜ ๊ฒฝ์šฐ, ๊ธฐ์ƒ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ์ด์šฉ๋ฅ ์ด ๋‚ฎ์€ ์‹œ๊ฐ„๋Œ€๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ ์‹ค์ œ ๊ด€์ธก๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์ •๊ทœํ™”๋ฅผ ํ•  ๊ฒฝ์šฐ, 0์— ๊ฐ€๊นŒ์šด ๋ฐœ์ „๋Ÿ‰์œผ๋กœ ๋‚˜๋ˆ„์–ด ๋ฏธ์„ธํ•œ ์˜ค์ฐจ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ๋ถ€๊ฐ๋˜์–ด ๋ชจ๋ธ์˜ ์‹ค์ œ ์˜ˆ์ธก ์„ฑ๋Šฅ๊ณผ ์„ฑ๋Šฅ ์ง€ํ‘œ ๊ฐ„์˜ ๊ดด๋ฆฌ๊ฐ€ ๋ฐœ์ƒํ•  ์šฐ๋ ค๊ฐ€ ์žˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ์— ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์—๋Š” ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ ์ ‘๊ทผ์ด ์š”๊ตฌ๋œ๋‹ค.

๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž”์ฐจ๋ฅผ ์‹ค์ œ๊ฐ’์ด ์•„๋‹Œ ์„ค๋น„์šฉ๋Ÿ‰ ๊ธฐ์ค€ ์ตœ๋Œ€์ถœ๋ ฅ์œผ๋กœ ์ •๊ทœํ™”ํ•œ ์ •๊ทœํ™”๋œ ํ‰๊ท ์ ˆ๋Œ€์˜ค์ฐจ๋ฅผ ์„ฑ๋Šฅ์ง€ํ‘œ๋กœ ์ฑ„ํƒํ•˜์˜€๋‹ค [11]. ์ด ๋ฐฉ๋ฒ•์€ ์ž”์ฐจ๋ฅผ ์„ค๋น„ ์šฉ๋Ÿ‰์˜ ์ตœ๋Œ€ ์ถœ๋ ฅ๊ฐ’์œผ๋กœ ๋‚˜๋ˆˆ ํ›„ ๊ทธ ํ‰๊ท ์„ ์ทจํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„๋ฅผ ์ ์ ˆํžˆ ๋ฐ˜์˜ํ•จ๊ณผ ๋™์‹œ์—, ์‹ค์ œ๊ฐ’ ๊ธฐ์ค€ ์ •๊ทœํ™” ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์„ฑ๋Šฅ ์™œ๊ณก ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค.

(11)
$ n MAE =\dfrac{1}{T}\sum_{t=1}^{T}\dfrac{\vert\hat{G_{t}}-G_{t}\vert}{P_{\max ,\: t}} $

$T$: ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฐœ์ˆ˜

$\hat{G_{t}}$: $t$์‹œ๊ฐ„์˜ ์˜ˆ์ธก๊ฐ’

$G_{t}$: $t$์‹œ๊ฐ„์˜ ์‹ค์ œ๊ฐ’

$P_{\max ,\: t}$: $t$์‹œ๊ฐ„์˜ ์„ค๋น„์šฉ๋Ÿ‰ ๊ธฐ์ค€ ์ตœ๋Œ€์ถœ๋ ฅ

์‹ (11)์€ nMAE๋ฅผ ์‚ฐ์ถœํ•˜๋Š” ์‹์œผ๋กœ ๊ฒ€์ฆ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐ„ $t$์— ๋Œ€ํ•ด ์˜ˆ์ธก ๊ฐ’ $\hat{G_{t}}$๊ณผ ์‹ค์ œ๊ฐ’ $G_{t}$์˜ ์ฐจ์— ์ ˆ๋Œ“๊ฐ’์„ ์ทจํ•ด ์„ค๋น„์šฉ๋Ÿ‰์˜ ์ตœ๋Œ€์ถœ๋ ฅ $P_{\max ,\: t}$์œผ๋กœ ์ •๊ทœํ™”ํ•œ ๊ฐ’์„ ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜ $T$์— ๋Œ€ํ•œ ํ‰๊ท ์œผ๋กœ ๊ฒ€์ฆ๊ฒฐ๊ณผ์˜ nMAE๋ฅผ ์‚ฐ์ถœํ•œ๋‹ค.

3. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•

3.1 ๊ธฐ์ƒ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„์  ์ฐจ์ด

ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์— ์ž…๋ ฅ๋˜๋Š” ๊ธฐ์ƒ์ž๋ฃŒ๋Š” ๊ณ ์ •ํ˜• ๊ด€์ธก์†Œ์—์„œ ์ˆ˜์ง‘๋˜๋ฏ€๋กœ, ๋ฐœ์ „์†Œ์™€์˜ ์œ„์น˜ ์ฐจ์ด๋กœ ๋Œ€ํ‘œ์„ฑ์˜ ํ•œ๊ณ„๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Š” ๋™์ผ ์ง€์—ญ ๋‚ด์—์„œ๋„ ๊ธฐ์ƒ๋ณ€์ˆ˜๊ฐ€ ๊ณต๊ฐ„์ ์œผ๋กœ ๊ธ‰๋ณ€ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค๊ณผ ๋งž๋ฌผ๋ ค, ๊ด€์ธก์†Œ ๊ฐ’์ด ๊ณง๋ฐ”๋กœ ๋ฐœ์ „์†Œ ์ž…์ง€์˜ ์‹ค์ œ ์กฐ๊ฑด์„ ๋Œ€๋ณ€ํ•˜์ง€ ๋ชปํ•ด ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ์ •ํ™•๋„๋ฅผ ์ €ํ•˜์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค [12]. ์ด๋Ÿฌํ•œ ๊ณต๊ฐ„์  ๋ถˆ์ผ์น˜๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด, ๊ด€์ธก์†Œ ์ž๋ฃŒ๋ฅผ ๋ฐœ์ „์†Œ ์ง€์ ์œผ๋กœ ๊ณต๊ฐ„ ๋ณด๊ฐ„ ํ•˜์—ฌ ์—ฐ์†์žฅ์˜ ํ˜•ํƒœ๋กœ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ํญ๋„“๊ฒŒ ์‚ฌ์šฉ๋œ๋‹ค. ๊ธฐ์ƒ ์—ฐ๊ตฌ์—์„œ ๊ด€์ธก๋ง์ด ๋“œ๋ฌธ ํ™˜๊ฒฝ์—์„œ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์„ ํ†ตํ•œ ์ผ์‚ฌ๋Ÿ‰ ์ถ”์ •์„ ์ง„ํ–‰ํ•œ ๋ฐ”๊ฐ€ ์žˆ๋‹ค [13]. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์ƒ์˜ˆ๋ณด ์ ‘๊ทผ์„ฑ์˜ ์–ด๋ ค์›€์œผ๋กœ ์‹ค์ œ ๊ธฐ์ƒ๊ด€์ธก๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ž…๋ ฅ๋ฐ์ดํ„ฐ์˜ ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• ๋ฐ ์†์‹คํ•จ์ˆ˜์— ๋”ฐ๋ฅธ ์˜ˆ์ธก ์ •ํ™•์„ฑ ๋ถ„์„์„ ํ†ตํ•œ ์˜ˆ์ธก ๋ฐฉ๋ฒ•๋ก  ๊ณ ๋„ํ™”๋ฅผ ๋ชฉ์ ์œผ๋กœ, ์‹ค์ œ ๊ด€์ธก๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• ๋ฐ ์†์‹คํ•จ์ˆ˜์— ๋”ฐ๋ฅธ ์ƒ๋Œ€์  ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค.

3.2 ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•

์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์€ ํ‘œ์ค€์ ์ธ ๊ณต๊ฐ„ ๋ณด๊ฐ„ ๊ธฐ๋ฒ•์œผ๋กœ, ํŠน์ • ์ง€์ ์—์„œ์˜ ๊ฐ’์„ ์ฃผ๋ณ€ ๊ด€์ธก๊ฐ’๋“ค์˜ ๊ฑฐ๋ฆฌ์˜ ์—ญ์ˆ˜์— ๋Œ€ํ•œ ๊ฐ€์ค‘ํ‰๊ท ์œผ๋กœ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊นŒ์šด ๊ด€์ธก์†Œ์ผ์ˆ˜๋ก ๋†’์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜๊ณ , ๋ฉ€๋ฆฌ ์žˆ๋Š” ๊ด€์ธก์†Œ์ผ์ˆ˜๋ก ์˜ํ–ฅ์ด ์ž‘์•„์ง€๋ฉฐ, ์ด๋Š” ๊ธฐ์ƒ ๋ณ€์ˆ˜๋“ค์ด ๊ณต๊ฐ„์  ์—ฐ์†์„ฑ์„ ๊ฐ–๋Š”๋‹ค๋Š” ์ „์ œํ•˜์—์„œ ์œ ํšจํ•˜๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” IDW์˜ ์ง€์ˆ˜ ๐‘๊ฐ€ ๊ฒฐ๊ณผ์˜ ๊ตญ์ง€์„ฑโ€“ํ‰ํ™œ์„ฑ ๊ท ํ˜•์„ ์ขŒ์šฐํ•˜๊ธฐ์—, ์ง€์ˆ˜์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๐‘๊ฐ€ ์ž‘์œผ๋ฉด ๋‹ค์ˆ˜ ๊ด€์ธก์†Œ์˜ ์˜ํ–ฅ์ด ๊ณ ๋ฅด๊ฒŒ ๋ฐ˜์˜๋˜์–ด ๋งค๋„๋Ÿฌ์šด ์žฅ์ด, ๐‘๊ฐ€ ํฌ๋ฉด ์ธ์ ‘ ๊ด€์ธก์˜ ์˜ํ–ฅ์ด ์ปค์ ธ ๊ตญ์ง€ ๋ณ€ํ™” ํฌ์ฐฉ์ด ๊ฐ•ํ™”๋œ๋‹ค [14].

(12)
$ w_{g,\: o}=\dfrac{(1/d_{g,\: o})^{p}}{\sum_{p=1}^{N}(1/d_{g,\: o})^{p}} $
(13)
$ D_{i,\: t,\: estimated}=\sum_{j=1}^{N}w_{i,\: j}\times D_{j,\: t,\: observed} $

$g$: ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ ๋ฒˆํ˜ธ

$o$: ๊ธฐ์ƒ๊ด€์ธก์†Œ ๋ฒˆํ˜ธ

$p$: ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๊ฑฐ๋“ญ์ œ๊ณฑ ์ง€์ˆ˜

$N$: ๊ธฐ์ƒ๊ด€์ธก์†Œ ๊ฐœ์ˆ˜

$d_{g,\: o}$: $g$๋ฐœ์ „์†Œ์™€ $o$๊ด€์ธก์†Œ์˜ ๊ฑฐ๋ฆฌ

$w_{g,\: o}$: $g$๋ฐœ์ „์†Œ์™€ $o$๊ด€์ธก์†Œ์˜ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜

$D_{o,\: t,\: ovserved}$: $o$๊ด€์ธก์†Œ์˜ $t$์‹œ๊ฐ„ ๊ด€์ธก ๊ธฐ์ƒ๋ฐ์ดํ„ฐ ๋ฒกํ„ฐ

$D_{g,\: t,\: estimated}$: $i$๋ฐœ์ „์†Œ์˜ $t$์‹œ๊ฐ„ ์ถ”์ • ๊ธฐ์ƒ๋ฐ์ดํ„ฐ ๋ฒกํ„ฐ

์‹ (12)์€ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜๋ฅผ ๊ตฌํ•˜๋Š” ์‹์œผ๋กœ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ์™€ $N$๊ฐœ์˜ ๊ด€์ธก์†Œ ๊ฐ„ ๊ฑฐ๋ฆฌ $d_{g,\: o}$์˜ ์—ญ์ˆ˜์˜ $p$์ œ๊ณฑ์„ ๊ฑฐ๋ฆฌ ์—ญ์ˆ˜์˜ $p$์ œ๊ณฑ์˜ ํ•ฉ์œผ๋กœ ์ •๊ทœํ™”ํ•˜์—ฌ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ $w_{g,\: o}$๋ฅผ ์‚ฐ์ถœํ•œ๋‹ค. ์‹ (13)์€ ์ธก์ •๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ธก์ •๋˜์ง€ ์•Š์€ ์ง€์ ์˜ ๊ฐ’์„ ์ถ”์ •ํ•˜๋Š” ์‹์œผ๋กœ ๊ด€์ธก๋œ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ $D_{o,\: t,\: observed}$๋ฅผ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜์— ๋Œ€ํ•ด ๊ฐ€์ค‘ํ•ฉ์„ ์ทจํ•ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ์˜ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ ์ถ”์ •๊ฐ’ $D_{i,\: t,\: estimated}$์„ ์‚ฐ์ถœํ•œ๋‹ค.

(14)
$ C_{t,\: total}=\sum_{i=1}^{m}C_{g} $
(15)
$ D_{t,\: represent}=\sum_{g=1}^{m}\dfrac{C_{g}\times D_{g,\: t,\: estimated}}{C_{t,\: total}} $

$m$: ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ ๊ฐœ์ˆ˜

$C_{g}$: $g$๋ฐœ์ „์†Œ์˜ ์„ค๋น„์šฉ๋Ÿ‰

$D_{t,\: represent}$: $t$์‹œ๊ฐ„์˜ ์ง€์—ญ ๋Œ€ํ‘œ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ

์‹ (14)์€ $m$๊ฐœ์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ์˜ ์„ค๋น„ ์šฉ๋Ÿ‰์„ ํ•ฉํ•˜์—ฌ ์ „์ฒด ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„ ์šฉ๋Ÿ‰ $C_{t,\: total}$์„ ๊ตฌํ•˜๋Š” ์‹์ด๋‹ค. ์‹ (15)์€ ๋Œ€ํ‘œ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฐ์ถœํ•˜๋Š” ์‹์œผ๋กœ ์‚ฐ์ถœํ•œ ๋ฐœ์ „์†Œ๋ณ„ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ $D_{i,\: t,\: estimated}$๋ฅผ ์ „์ฒด ํƒœ์–‘๊ด‘ ์„ค๋น„์šฉ๋Ÿ‰์— ๋Œ€ํ•ด ๊ฐ€์ค‘ํ‰๊ท ์„ ์ทจํ•˜์—ฌ ์ง€์—ญ ๋Œ€ํ‘œ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ $D_{t,\: represent}$๋ฅผ ์‚ฐ์ถœํ•œ๋‹ค.

3.3 ์ฃผ๊ฐ„ ๋ฐ์ดํ„ฐ ์„ ๋ณ„

ํƒœ์–‘๊ด‘ ๋ฐœ์ „์€ ์•ผ๊ฐ„์— ๊ทธ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์— ์˜ํ•ด ์ถœ๋ ฅ์ด 0์ด ๋˜๋ฏ€๋กœ, ์•ผ๊ฐ„ ์‹œ๊ณ„์—ด์„ ํ•™์Šตยทํ‰๊ฐ€ ์ง‘ํ•ฉ์— ํฌํ•จํ•˜๋ฉด ํ‰๊ท  ์˜ค์ฐจ ์ง€ํ‘œ๊ฐ€ ์ธ์œ„์ ์œผ๋กœ ๋‚ฎ์•„์ง€๊ณ , ๋ชจ๋ธ์˜ ํ•™์Šต์ด ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์ธ ์ฃผ๊ฐ„์˜ ํ”ผํฌ ๋ฐ ๋žจํ•‘ ๊ตฌ๊ฐ„๋ณด๋‹ค ์•ผ๊ฐ„ ๋ฐœ์ „๋Ÿ‰์„ ์ž˜ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์œ ๋„๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฏธ๊ตญ DOE์˜ Solar Forecast Arbiter๋Š” Nighttime data: Day/night filter based on solar zenith angle๋ฅผ ๊ธฐ๋ณธ ํ‰๊ฐ€ ์˜ต์…˜์œผ๋กœ ์ œ์‹œํ•œ๋‹ค [15].

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์›์น™์— ๋”ฐ๋ผ ๋ฐœ์ „๋Ÿ‰์ด 0์— ์ˆ˜๋ ดํ•˜๋Š” ์•ผ๊ฐ„์„ ์ œ์™ธํ•˜๊ณ , ์šด์˜์ƒ ํ†ต์ผ๋œ ํ•™์Šต์„ ์œ„ํ•ด ์ฃผ๊ฐ„ ์‹œ๊ฐ„๋Œ€๋ฅผ 07:00โ€“20:00๋กœ ์„ค์ •ํ•˜์—ฌ ํ•™์Šต ๋ฐ ๊ฒ€์ฆ ๋Œ€์ƒ์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค [16].

4. ์‚ฌ๋ก€์—ฐ๊ตฌ

4.1 ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ ๋ฐ ์ „์ฒ˜๋ฆฌ

๋ณธ ์‚ฌ๋ก€์—ฐ๊ตฌ์—์„œ๋Š” ์ œ์ฃผ๋„ ์ง€์—ญ์˜ ์ฃผ๊ฐ„ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก์„ ์œ„ํ•ด 2020๋…„ 1์›”๋ถ€ํ„ฐ 2023๋…„ 5์›”๊นŒ์ง€์˜ ๋ฐœ์ „๋Ÿ‰ ๊ณ„๋Ÿ‰ ๋ฐ์ดํ„ฐ [17], ๋ฐœ์ „์†Œ๋ณ„ ์„ค๋น„์šฉ๋Ÿ‰ ๋ฐ ์œ„์น˜ ์ •๋ณด [18], ๊ทธ๋ฆฌ๊ณ  ์ œ์ฃผ ๋ฐ ๊ณ ์‚ฐ ๊ธฐ์ƒ๊ด€์ธก์†Œ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค [19].

๋˜ํ•œ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„์™€ ์ œ์ฃผ๋„ ๊ธฐ์ƒ๊ด€์ธก์†Œ์˜ ๊ณต๊ฐ„์  ์ฐจ์ด๋ฅผ ๋ณด๊ฐ„ํ•˜๊ธฐ ์œ„ํ•ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„์™€ ์ œ์ฃผ๊ด€์ธก์†Œ, ๊ณ ์‚ฐ๊ด€์ธก์†Œ์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„ ์ฃผ์†Œ์˜ ์œ„๋„์™€ ๊ฒฝ๋„๋ฅผ Naver Geocode API๋ฅผ ํ†ตํ•ด ๊ทธ๋ฆผ 2์™€ ๊ฐ™์ด ํŒŒ์•…ํ•˜์˜€๋‹ค. ์ดํ›„ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„๋ณ„ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ ํ•™์Šต์— ๋ณ€์ˆ˜๋กœ ์ž…๋ ฅ๋  ์ œ์ฃผ ๋Œ€ํ‘œ ๊ธฐ์ƒ๊ฐ’์„ ์ถ”์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 2. ์ œ์ฃผ์ง€์—ญ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ ํ˜„ํ™ฉ

Fig. 2. Overview of Solar Power Plants in Jeju

../../Resources/kiee/KIEE.2026.75.1.36/fig2.png

4.2 ์ž…๋ ฅ ํ”ผ์ฒ˜ ์„ค์ •

ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•œ ์ž…๋ ฅ ํ”ผ์ฒ˜๋Š” ๊ณต๊ฐ„๋ณด๊ฐ„๋ฒ•์œผ๋กœ ์‚ฐ์ถœํ•œ ์ œ์ฃผ ๋Œ€ํ‘œ ๊ธฐ์ƒ๋ฐ์ดํ„ฐ์™€ ์‹œ๊ณ„์—ด ํŒŒ์ƒ๋ณ€์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ์žฅ๊ธฐ๊ฐ„ ํ•™์Šต์— ๋”ฐ๋ฅธ ํƒœ์–‘๊ด‘ ์„ค๋น„ ๊ทœ๋ชจ ๋ณ€ํ™”๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ์‹œ์ ๋ณ„ ์ œ์ฃผ๋„ ํƒœ์–‘๊ด‘ ์„ค๋น„์šฉ๋Ÿ‰ ์ดํ•ฉ์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ ์„ธ๋ถ€ ํ•ญ๋ชฉ์€ ํ‘œ 1์— ๊ธฐ์ˆ ํ•˜์˜€๋‹ค.

ํ‘œ 1. ๋ชจ๋ธ ์ž…๋ ฅ ํ”ผ์ฒ˜

Table 1. Input Features for the Forecasting Model

๊ตฌ๋ถ„ ๋ณ€์ˆ˜
๊ธฐ์ƒ๋ฐ์ดํ„ฐ ๊ธฐ์˜จ(ยฐC), ๊ฐ•์ˆ˜๋Ÿ‰(mm), ํ’์†(m/s), ์ผ์‚ฌ๋Ÿ‰(MJ/mยฒ), ์ผ์กฐ์‹œ๊ฐ„(h)
์‹œ๊ณ„์—ด ํŒŒ์ƒ๋ณ€์ˆ˜ ๊ณ„์ ˆ, ์›”(MM), ์‹œ๊ฐ„(hh)
ํƒœ์–‘๊ด‘ ๋ฐœ์ „์„ค๋น„ ์ œ์ฃผ๋„ ๋‚ด ํƒœ์–‘๊ด‘ ์„ค๋น„์šฉ๋Ÿ‰(kW)

4.3 XGB ๋ชจ๋ธ ํ•™์Šต

๋ณธ ์—ฐ๊ตฌ์˜ ์˜ˆ์ธก ๊ตฌ๊ฐ„์€ ๋ชฉํ‘œ์ผ์ž์˜ ์ฃผ๊ฐ„์‹œ๊ฐ„๋Œ€์ด๋ฉฐ, ํ•˜๋ฃจ ์ „ ๋ฐœ์ „๊ณ„ํš ์ˆ˜๋ฆฝ์„ ์œ„ํ•ด ์ „์ผ ๋‹จ๊ธฐ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋‹ค๋งŒ, ๊ธฐ์ƒ์˜ˆ๋ณด ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์„ฑ์˜ ์ œ์•ฝ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์ œ ๊ด€์ธก ๊ธฐ์ƒ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• ๋ฐ ์†์‹คํ•จ์ˆ˜์˜ ๊ตฌ์„ฑ์— ๋”ฐ๋ฅธ ์ƒ๋Œ€์  ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

XGBoost ๋ชจ๋ธ ํ•™์Šต์€ 2020-01-01 ~ 2023-05-31์˜ ์‹œ๊ฐ„๋‹จ์œ„ ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•™์Šต ๋ฐ์ดํ„ฐ๋Š” ํƒœ์–‘๊ด‘์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•ด ์ฃผ๊ฐ„ ์‹œ๊ฐ„๋Œ€(07:00โ€“20:00)๋กœ ํ•œ์ •ํ–ˆ์œผ๋ฉฐ, ๋ฐœ์ „์†Œ์™€ ๊ด€์ธก์†Œ๊ฐ„ ๊ณต๊ฐ„ ๋ถˆ์ผ์น˜๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ณต๊ฐ„๋ณด๊ฐ„ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์…‹์„ 6์ข…์„ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์˜ ๊ฑฐ๋“ญ์ œ๊ณฑ ์ง€์ˆ˜ p๋ฅผ 1~5๋กœ ๋‹ฌ๋ฆฌ ํ•œ 5๊ฐœ์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์…‹๊ณผ, ๋น„๊ต ๊ธฐ์ค€์œผ๋กœ ๋‹จ์ˆœ ๊ณต๊ฐ„ ํ‰๊ท  1๊ฐœ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค [20].

๋˜ํ•œ, ๊ฐ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ์†์‹คํ•จ์ˆ˜๋ฅผ MSE, MAE ๋ฐ Pseudo-Huber๋กœ ์„ค์ •ํ•˜์—ฌ ๋™์ผํ•œ ์„ค์ •์—์„œ ๊ฐœ๋ณ„ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์—ฌ, ์ด 18๊ฐœ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ํ•™์Šต๋œ 18๊ฐœ ๋ชจ๋ธ์€ ์ดํ›„ ๋™์ผํ•œ ๊ฒ€์ฆ ์ฒด๊ณ„์—์„œ ๊ณ„์ ˆ๋ณ„ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋น„๊ตํ•จ์œผ๋กœ์จ ๋ณด๊ฐ„ ๋ฐฉ์‹๊ณผ ์†์‹คํ•จ์ˆ˜ ์„ ํƒ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค.

4.4 ํ•™์Šต๋ชจ๋ธ ๊ฒ€์ฆ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„

์ฃผ๊ฐ„ ํ™œ์„ฑ ์‹œ๊ฐ„๋Œ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ 6์ข… ๊ณต๊ฐ„์ž…๋ ฅ๊ณผ 3์ข… ์†์‹คํ•จ์ˆ˜๋ฅผ ์กฐํ•ฉํ•œ 18๊ฐœ ๋ชจ๋ธ์„ ๋™์ผ ์กฐ๊ฑด์—์„œ ํ•™์Šตํ•œ ๋’ค, 2023-06-01~2024-05-31์˜ 1๋…„๊ฐ„ ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ณ„์ ˆ๋ณ„ 4๊ฐœ ๊ตฌ๊ฐ„์œผ๋กœ ๋ถ„ํ• ํ•˜์—ฌ nMAE๋ฅผ ์„ฑ๋Šฅ์ง€ํ‘œ๋กœ ๊ทธ๋ฆผ 3~6๊ณผ ๊ฐ™์ด ํžˆํŠธ๋งต์œผ๋กœ ํ‘œํ˜„ํ•˜์˜€๋‹ค. ๊ฐ ํžˆํŠธ๋งต์€ ์†์‹คํ•จ์ˆ˜๋ฅผ ํ–‰์œผ๋กœ, ๋ณด๊ฐ„๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ž…๋ ฅ์„ ์—ด๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ƒ‰์ƒ์€ nMAE๋ฅผ ๋‚ฎ์„์ˆ˜๋ก ๋ฐ์€ ์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์…€ ๋‚ด๋ถ€ ์ˆซ์ž๋Š” nMAE์ด๊ณ , ๋ถ‰์€ ํ…Œ๋‘๋ฆฌ๋Š” ํ•ด๋‹น ํŒจ๋„์—์„œ์˜ ์ตœ์  ์กฐํ•ฉ์„ ํ‘œ์‹œํ•œ๋‹ค.

๊ทธ๋ฆผ 3. ๋ณด๊ฐ„-์†์‹คํ•จ์ˆ˜ ์กฐํ•ฉ๋ณ„ nMAE ํžˆํŠธ๋งต โ€“ ๋ด„

Fig. 3. nMAE Heatmap by Interpolation-Loss Combinations โ€“ Spring

../../Resources/kiee/KIEE.2026.75.1.36/fig3.png

๋ด„์ฒ ์€ MAE ํ–‰ ์ „๋ฐ˜์ด ๊ฐ€์žฅ ๋ฐ๊ฒŒ ๋‚˜ํƒ€๋‚˜๊ณ  ์†์‹คํ•จ์ˆ˜ ์˜ํ–ฅ์ด ๋šœ๋ ทํ•˜๋‹ค. IDW ๐‘=4 ๋ฐ MAE ์กฐํ•ฉ์˜ nMAE๊ฐ€ 5.49%๋กœ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ๐‘=1ยท2ยท5์—์„œ๋„ MAE๊ฐ€ ์ผ๊ด€๋œ ์šฐ์œ„๋ฅผ ๋ณด์ธ๋‹ค. ๋ฐ˜๋ฉด Huber์™€ MSE๋Š” ๐‘ ๋ณ€ํ™”์— ๋”ฐ๋ผ ํŽธ์ฐจ๊ฐ€ ์žˆ์œผ๋‚˜ MAE ๋Œ€๋น„ ์ „๋ฐ˜์ ์œผ๋กœ 0.3~0.6%p ๋†’์€ ์˜์—ญ์ด ๋งŽ๋‹ค. ์ด๋Š” ๋ด„์ฒ ์— ๊ตญ์ง€์  ์ผ์‚ฌ ๋ณ€ํ™”๋Ÿ‰์ด ํฌ์ง€๋งŒ, ๊ทน๋‹จ๊ฐ’์ด ์—ฌ๋ฆ„๋งŒํผ ์žฆ์ง€ ์•Š์•„ ๋†’์€ ๊ฐ•๋„์˜ ๋ณด๊ฐ„์ด ๊ตญ์ง€์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋ฉฐ, ๋™์‹œ์— MAE์˜ ์ด์ƒ์น˜ ๋‘”๊ฐ์„ฑ์ด ์ž”์ฐจ ๋ถ„ํฌ์˜ ๋น„์ •๊ทœ์„ฑ์„ ์™„๋งŒํ•˜๊ฒŒ ํ•™์Šตํ–ˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

๊ทธ๋ฆผ 4. ๋ณด๊ฐ„-์†์‹คํ•จ์ˆ˜ ์กฐํ•ฉ๋ณ„ nMAE ํžˆํŠธ๋งต โ€“ ์—ฌ๋ฆ„

Fig. 4. nMAE Heatmap by Interpolation-Loss Combinations โ€“ Summer

../../Resources/kiee/KIEE.2026.75.1.36/fig4.png

์—ฌ๋ฆ„์€ ์ „์ฒด ํŒจ๋„์ด ์ƒ๋Œ€์ ์œผ๋กœ ์˜ค์ฐจ๊ฐ€ ํฌ๋ฉฐ, ์กฐํ•ฉ ๊ฐ„ ๊ฒฉ์ฐจ๊ฐ€ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋ฒŒ์–ด์ง„๋‹ค. ํ‰๊ท ์ž…๋ ฅ๋ฐ์ดํ„ฐ ๋ฐ Pseudo-Huber ์กฐํ•ฉ์˜ nMAE๊ฐ€ 7.13%๋กœ, ํ‰๊ท  ์ž…๋ ฅ ๋ฐ Huberํ˜• ์†์‹ค์˜ ์กฐํ•ฉ์ด ๋Œ€๋ฅ˜์„ฑ ๊ตฌ๋ฆ„ ๋ฐ ์žฅ๋งˆ๋กœ ์ธํ•œ ์žก์Œ๊ณผ ๊ธ‰๋ณ€์„ ๋™์‹œ์— ์–ต์ œํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ์—ฌ๋ฆ„์ฒ  ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์€ ๋ณด๊ฐ„ ๊ฐ•๋„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์˜คํžˆ๋ ค ์ƒ‰์ด ์˜ค์ฐจ๊ฐ€ ์ปค์ง€๋Š” ํ˜„์ƒ์ด ๊ด€์ฐฐ๋˜๋ฉฐ, ํŠนํžˆ IDW ๐‘=3 ๋ฐ MAE์˜ ์กฐํ•ฉ์— ๋Œ€ํ•ด ๋ˆˆ์— ๋„๋Š” ์—ดํ™”๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Š” ๊ณ ๊ฐ•๋„ ๋ณด๊ฐ•์ด ๊ตญ์ง€์  ๊ธ‰๋ณ€์„ ๊ณผ๋„ํ•˜๊ฒŒ ์ฆํญ์‹œ์ผœ ๋ชจ๋ธ์— ๋…ธ์ด์ฆˆ๋ฅผ ์ฃผ์ž…ํ•œ ๊ฒฐ๊ณผ๋กœ ํ•ด์„๋œ๋‹ค. ๋ฐ˜๋Œ€๋กœ ํ‰๊ท  ์ž…๋ ฅ๋ฐ์ดํ„ฐ๋Š” ๊ณต๊ฐ„ ์žก์Œ์„ ์ค„์—ฌ์ฃผ๊ณ , Huber๋Š” ์†Œ์˜ค์ฐจ ๊ตฌ๊ฐ„์€ MSE์ฒ˜๋Ÿผ, ๋Œ€์˜ค์ฐจ ๊ตฌ๊ฐ„์€ MAE์ฒ˜๋Ÿผ ์ž‘๋™ํ•ด ์—ฌ๋ฆ„์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์˜ ํฐ ์ž”์ฐจ ๋ถ„ํฌ์— ๊ฐ€์žฅ ์ ํ•ฉํ–ˆ๋‹ค.

๊ทธ๋ฆผ 5. ๋ณด๊ฐ„-์†์‹คํ•จ์ˆ˜ ์กฐํ•ฉ๋ณ„ nMAE ํžˆํŠธ๋งต โ€“ ๊ฐ€์„

Fig. 5. nMAE Heatmap by Interpolation-Loss Combinations โ€“ Autumn

../../Resources/kiee/KIEE.2026.75.1.36/fig5.png

๊ฐ€์„์€ ๋ณ€๋™์„ฑ์ด ๋ด„๊ณผ ์—ฌ๋ฆ„ ์‚ฌ์ด์ด๋ฉฐ, Huber ํ–‰์˜ ์ €๊ฐ•๋„ ๋ณด๊ฐ•์˜์—ญ์˜ ์˜ค์ฐจ๊ฐ€ ๋‚ฎ๋‹ค. IDW ๐‘=1 ๋ฐ Pseudo-Huber ์กฐํ•ฉ์˜ nMAE๊ฐ€ 6.33%๋กœ, Huber์˜ ์—ฐ์† ์ „์ด์„ฑ์ด ์ž‘๋™ํ•ด ์ผ์‹œ์  ๊ธ‰๋ณ€์„ ์™„ํ™”ํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. MAE ํ–‰์—์„œ๋Š” IDW ๐‘=3์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ์–ด๋‘์šด ์…€์ด ๊ด€์ฐฐ๋˜๋Š”๋ฐ, ์ด๋Š” ํ•ด๋‹น ์กฐํ•ฉ์ด ๊ฐ€์„์ฒ ์˜ ์™„๋งŒํ•œ ๋ณ€๋™์— ๋น„ํ•ด ๊ตญ์ง€์„ฑ ๊ฐ€์ค‘์ด ๊ณผ๋„ํ–ˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ข…ํ•ฉํ•˜๋ฉด, ๊ฐ€์„์€ ์ €๊ฐ•๋„ ๋ณด๊ฐ• ๋ฐ Huber ์กฐํ•ฉ์—์„œ ์„ฑ๋Šฅ ์ƒ์œ„๊ถŒ์ด ๋นˆ๋ฒˆํžˆ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ์ง€๋‚˜์นœ ๊ตญ์ง€ํ™”๋ณด๋‹ค๋Š” ํ‰ํ™œํ™”์™€ ๊ฐ•๊ฑด ์†์‹ค์˜ ๊ฒฐํ•ฉ์ด ์œ ๋ฆฌํ•˜๋‹ค.

๊ทธ๋ฆผ 6. ๋ณด๊ฐ„-์†์‹คํ•จ์ˆ˜ ์กฐํ•ฉ๋ณ„ nMAE ํžˆํŠธ๋งต โ€“ ๊ฒจ์šธ

Fig. 6. nMAE Heatmap by Interpolation-Loss Combinations โ€“ Winter

../../Resources/kiee/KIEE.2026.75.1.36/fig6.png

๊ฒจ์šธ์€ MAE ํ–‰์˜ ๊ณ ๊ฐ•๋„ ๋ณด๊ฐ•์˜ ์„ฑ๋Šฅ์ด ์ข‹๋‹ค. IDW ๐‘=4 ๋ฐ MAE ์กฐํ•ฉ์— ๋Œ€ํ•ด 5.43%์˜ nMAE ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ๐‘=3,4 ๊ตฌ๊ฐ„์—์„œ ์ผ๊ด€๋œ ์šฐ์œ„๊ฐ€ ๊ด€์ฐฐ๋œ๋‹ค. ์ด๋Š” ์ €๊ณ ๋„ ํƒœ์–‘ ๋ฐ ๊ตฌ๋ฆ„ ๊ฒฝ๊ณ„ ํ†ต๊ณผ ๋“ฑ์œผ๋กœ ๊ตญ์ง€์  ์ผ์‚ฌ ๊ธ‰๋ณ€์ด ๋นˆ๋ฒˆํ•œ ๊ฒจ์šธ์— ์ธ์ ‘ ๊ด€์ธก์†Œ ๊ฐ€์ค‘์„ ๊ฐ•ํ™”ํ•ด์•ผ ์‹ค์ œ ๋ณ€๋™์„ ์ž˜ ํฌ์ฐฉํ•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. Huber๋Š” ํ‰๊ท ์ ์œผ๋ก  ์ค€์ˆ˜ํ•˜๋‚˜ MAE ๋Œ€๋น„ ์†Œํญ ์—ด์„ธ์ด๋ฉฐ, MSE๋Š” ์„ธ ๊ณ„์ ˆ ์ค‘ ๊ฒจ์šธ์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ๋ถˆ๋ฆฌํ•˜๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ฒจ์šธ์€ ๊ตญ์ง€์„ฑ ๊ฐ•ํ™” ๋ฐ MAE ์กฐํ•ฉ์ด ๊ฐ€์žฅ ํ•ฉ๋ฆฌ์ ์ด๋‹ค.

์ด๋Ÿฌํ•œ ๊ณ„์ ˆ๋ณ„ ๋ณด๊ฐ„ ๊ธฐ๋ฒ•๊ณผ ์†์‹คํ•จ์ˆ˜์˜ 18๊ฐœ์˜ ์กฐํ•ฉ ์ค‘ ์„ฑ๋Šฅ์ด ์ข‹์€ 3๊ฐœ์˜ ์กฐํ•ฉ์„ ํ‘œ 2์— ์ •๋ฆฌํ•˜์˜€์œผ๋ฉฐ, ๊ฐ€์žฅ ์„ฑ๋Šฅ์ด ์ข‹์•˜๋˜ ์กฐํ•ฉ์„ ๊ทธ๋ฆผ 7~10๊ณผ ๊ฐ™์ด ์ •๋ฆฌํ•˜์˜€๋‹ค.

ํ‘œ 2. nMAE ๊ธฐ์ค€ ๊ณ„์ ˆ๋ณ„ ์ƒ์œ„ 3๊ฐœ ๋ชจ๋ธ ์กฐํ•ฉ

Table 2. Top-3 Model Combinations by Season ranked by nMAE

๊ณ„์ ˆ ์ˆœ๋ฒˆ ๋ณด๊ฐ„๋ฐฉ๋ฒ• ์†์‹คํ•จ์ˆ˜ nMAE(%)
Spring 1 IDW p=4 MAE 5.49
2 IDW p=1 MAE 5.58
3 IDW p=2 MAE 5.60
Summer 1 Average Huber 7.13
2 IDW p=1 MSE 7.34
3 Average MSE 7.36
Autumn 1 IDW p=1 Huber 6.33
2 IDW p=3 MSE 6.35
3 IDW p=3 Huber 6.40
Winter 1 IDW p=4 MAE 5.43
2 IDW p=3 MAE 5.44
3 IDW p=2 MAE 5.45

ํ‘œ 2๋Š” ์ฃผ๊ฐ„ ํ™œ์„ฑ ์‹œ๊ฐ„๋Œ€ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ 18๊ฐœ ์กฐํ•ฉ์˜ ๊ณ„์ ˆ๋ณ„, ์—ฐ๊ฐ„ nMAE ์ƒ์œ„ 3๊ฐœ๋ฅผ ๊ธฐ์ž…ํ•˜์˜€๋‹ค. ๊ฐ ๊ตฌ๊ฐ„์—์„œ nMAE๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์šฐ์ˆ˜ํ•˜๋ฉฐ, ์ƒ์œ„๊ถŒ ๊ฐ„ ๊ฒฉ์ฐจ๋Š” ๋Œ€์ฒด๋กœ 0.03โ€“0.24%p ์ˆ˜์ค€์œผ๋กœ ๊ทผ์†Œํ•˜๋‹ค. ๊ณ„์ ˆ๋ณ„ ์ตœ์  ์กฐํ•ฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋ด„์€ IDW p=4 ๋ฐ MAE, ์—ฌ๋ฆ„์€ Average ๋ฐ Pseudo-Huber, ๊ฐ€์„์€ IDW p=1 ๋ฐ Pseudo-Huber, ๊ฒจ์šธ์€ IDW p=4 ๋ฐ MAE๊ฐ€ ๊ฐ๊ฐ ์ตœ์ € nMAE๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ๊ณ„์ ˆ์— ๋”ฐ๋ผ ๊ณต๊ฐ„ ๊ฐ€์ค‘์˜ ๊ฐ•๋„์™€ ์†์‹คํ•จ์ˆ˜์˜ ๊ฐ•๊ฑด์„ฑ ํŠน์„ฑ์ด ๋‹ค๋ฅด๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ ˆ๋ณ„ ์ตœ์  ์กฐํ•ฉ์— ๋Œ€ํ•ด ๊ทธ๋ฆผ 7~10๊ณผ ๊ฐ™์ด ๊ณ„์ ˆ๋ณ„ ์ผ์ผ ํ”ผํฌ ์ตœ๋Œ€์น˜๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 7. ์ตœ์  ์กฐํ•ฉ์˜ ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต โ€“ ๋ด„

Fig. 7. Daily Peak: Actual vs. Predicted โ€“ Spring

../../Resources/kiee/KIEE.2026.75.1.36/fig7.png

๋ด„์ฒ  ์ตœ์  ์กฐํ•ฉ์˜ ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต๋Š” ์ „์ผ ๋Œ€๋น„ ์ผ๋ณ„ ํ”ผํฌ ๋ณ€ํ™” ํญ์ด ํฐ ๊ฒฝ์šฐ์—๋„ ๊ณผ๋„ํ•˜๊ฒŒ ํ”๋“ค๋ฆฌ์ง€ ์•Š๊ณ  ๊ฒฝํ–ฅ์„ฑ์„ ์ž˜ ๋”ฐ๋ผ๊ฐ์„ ๋ณด์ธ๋‹ค. ์ด๋Š” MAE ๊ธฐ๋ฐ˜ ์˜ˆ์ธก์œผ๋กœ ์ธํ•ด ๊ณผ๋„ํ•œ ํŽ˜๋„ํ‹ฐ๋ฅผ ํ”ผํ•˜๋ฉฐ ์ „์ฒด ๊ถค์ ์„ ์•ˆ์ •์ ์œผ๋กœ ๋”ฐ๋ฅธ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ 8. ์ตœ์ ์กฐํ•ฉ์˜ ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต โ€“ ์—ฌ๋ฆ„

Fig. 8. Daily Peak: Actual vs. Predicted โ€“ Summer

../../Resources/kiee/KIEE.2026.75.1.36/fig8.png

์žฅ๋งˆ ๋ฐ ๋Œ€๋ฅ˜ ๊ตฌ๋ฆ„ ํ†ต๊ณผ๋กœ ์ผ๋ณ„ ํ”ผํฌ์˜ ์‚ฐํฌ๊ฐ€ ํฐ ๊ตฌ๊ฐ„์—์„œ, ํ‰๊ท  ์ž…๋ ฅ์ด ๊ด€์ธก ์žก์Œ์„ ํ‰ํ™œํ™”ํ•จ๊ณผ ๋™์‹œ์— Pseudo-Huber์˜ ๋ฏธ์„ธ ์˜ค์ฐจ์— ๋Œ€ํ•œ ํ™œ๋ฐœํžˆ ํ•™์Šต ๋ฐ ํฐ ์˜ค์ฐจ์— ๋Œ€ํ•œ ์–ต์ œ๋กœ ๊ณผ/์†Œ์ถ”์ •์˜ ํญ์„ ์ œํ•œํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ณ€๋™ํญ์ด ํฐ ์—ฌ๋ฆ„์—๋„ ํ”ผํฌ ์ถ”์ข…์˜ ์ผ๊ด€์„ฑ์ด ์œ ์ง€๋จ์„ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ 9. ์ตœ์ ์กฐํ•ฉ์˜ ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต โ€“ ๊ฐ€์„

Fig. 9. Daily Peak: Actual vs. Predicted โ€“ Autumn

../../Resources/kiee/KIEE.2026.75.1.36/fig9.png

๊ฐ€์„์€ ๋ด„ยท์—ฌ๋ฆ„ ๋Œ€๋น„ ์ค‘๊ฐ„ ์ˆ˜์ค€์˜ ๋ณ€๋™์„ฑ์ด ๋‚˜ํƒ€๋‚œ๋‹ค. ์˜ˆ์ธก ํ”ผํฌ๋Š” ์‹ค์ธก ๋Œ€๋น„ ์ „๋ฐ˜์  ์ถ”์„ธ์™€ ๊ตด๊ณก์˜ ์ผ์น˜๊ฐ€ ์–‘ํ˜ธํ•˜๊ณ , ํŠน์ • ์‹œ๊ธฐ์— ํ•œ์ชฝ์œผ๋กœ ์น˜์šฐ์นœ ์ง€์†์  ํŽธํ–ฅ์ด ๋‘๋“œ๋Ÿฌ์ง€์ง€ ์•Š์Œ์„ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ 10. ์ตœ์ ์กฐํ•ฉ์˜ ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต โ€“ ๊ฒจ์šธ

Fig. 10. Daily Peak: Actual vs. Predicted โ€“ Winter

../../Resources/kiee/KIEE.2026.75.1.36/fig10.png

๊ฒจ์šธ ๊ตฌ๊ฐ„์—์„œ๋Š” ํ”ผํฌ ์ ˆ๋Œ€๊ฐ’์ด ๋‚ฎ์•„์ง€๋Š” ๊ฐ€์šด๋ฐ ์ „์ผ ๋Œ€๋น„ ํ”ผํฌ์˜ ๋น„๊ต์  ๊ฐ•ํ•œ ๋ณ€๋™์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ์˜ˆ์ธก์€ ๋‚™ํญ ๋ฐ ๋ฐ˜๋“ฑ์ด ๋ฒˆ๊ฐˆ์•„ ๋‚˜ํƒ€๋‚˜๋Š” ๊ตฌ๊ฐ„์—์„œ ๋ณ€ํ™” ๋ฐฉํ–ฅ์„ ์ถฉ์‹คํžˆ ์ถ”์ข…ํ•˜๋ฉฐ, ์—ฐ์†์ ์ธ ๋ง‘์€ ๋‚  ๋ฐ ํ๋ฆฐ ๋‚  ๊ตฌ๊ฐ„์—์„œ๋„ ์ถ”์„ธ์  ์ •ํ•ฉ์„ ์œ ์ง€ํ•œ๋‹ค. ๊ณ ํ”ผํฌ ๋ฐ ์ €ํ”ผํฌ ๋ชจ๋‘์—์„œ ํŽธํ–ฅ์ด ๋ˆ„์ ๋˜์ง€ ์•Š๊ณ  ๊ณ„์ ˆ ๋‚ด๋‚ด ๋น„๊ต์  ์ผ์ •ํ•œ ์˜ค์ฐจ ์ˆ˜์ค€์„ ๋ณด์ธ๋‹ค.

4.5 ๊ฒฐ๊ณผ๋ถ„์„

๋ณธ ์ ˆ์—์„œ๋Š” 4.4์ ˆ์—์„œ ์ œ์‹œํ•œ ํžˆํŠธ๋งต, ๊ณ„์ ˆ๋ณ„ ์ƒ์œ„ 3๊ฐœ ์กฐํ•ฉ ์š”์•ฝํ‘œ ๋ฐ ๊ทธ๋ฆฌ๊ณ  ๊ณ„์ ˆ๋ณ„ ์ผ๋ณ„ ํ”ผํฌ ๊ฐœ์š” ํ”Œ๋กฏ์„ ์ข…ํ•ฉํ•˜์—ฌ, ์†์‹คํ•จ์ˆ˜ ์„ ํƒ๊ณผ ๊ณต๊ฐ„ ๋ณด๊ฐ„ ๊ฐ•๋„๊ฐ€ ๊ณ„์ ˆ ํŠน์„ฑ์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”์ง€ ๋ถ„์„ํ•œ๋‹ค.

์†์‹คํ•จ์ˆ˜์— ๋Œ€ํ•œ ๊ณ„์ ˆ๋ณ„ ํšจ๊ณผ๋กœ ๋ด„์ฒ  ํžˆํŠธ๋งต์—์„œ MAE ํ–‰์ด ์ „๋ฐ˜์ ์œผ๋กœ ๋ฐ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, IDW p=4 ๋ฐ MAE ์กฐํ•ฉ์ด ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ–ˆ๋‹ค. ๋ด„์ฒ ์€ ๋ง‘์€ ๋‚ ๊ณผ ๊ตฌ๋ฆ„ ํ†ต๊ณผ๊ฐ€ ๊ต์ฐจํ•˜๋ฉด์„œ ์ผ์‚ฌ ๊ตฌ๋ฐฐ๊ฐ€ ๋น„๊ต์  ์„ ๋ช…ํ•˜๊ฒŒ ํ˜•์„ฑ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žฆ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ ์ œ๊ณฑ์˜ค์ฐจ ๊ธฐ๋ฐ˜ MSE๋Š” ๋“œ๋ฌผ๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ํฐ ์˜ค์ฐจ์— ๋ฏผ๊ฐํ•ด ํ‰๊ท  ์„ฑ๋Šฅ์ด ํ”๋“ค๋ฆด ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, MAE๋Š” ์ด์ƒ์น˜ ์˜ํ–ฅ์— ๋‘”๊ฐํ•˜์—ฌ ์•ˆ์ •์ ์ธ ์ถ”์ข…์„ ๋ณด์ธ๋‹ค. ์ผ๋ณ„ ํ”ผํฌ ๊ฐœ์š” ํ”Œ๋กฏ์—์„œ๋„ ์ƒ์Šนยทํ•˜๊ฐ• ๊ตฌ๊ฐ„์˜ ๋ฐฉํ–ฅ์„ฑ๊ณผ ์ฒ™๋„๊ฐ€ ๋น„๊ต์  ์ผ๊ด€๋˜๊ฒŒ ๋งž๋ฌผ๋ ค, ํžˆํŠธ๋งต์˜ ์ •๋Ÿ‰ ๊ฒฐ๊ณผ์™€ ์ •์„ฑ์ ์œผ๋กœ ํ•ฉ์น˜ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค.

์—ฌ๋ฆ„์€ Average ๋ฐ Pseudo-Huber ์กฐํ•ฉ์ด ์ตœ์ € nMAE๋ฅผ ๋ณด์˜€๋‹ค. ์žฅ๋งˆ ๋ฐ ๋Œ€๋ฅ˜์„ฑ ๊ตฌ๋ฆ„ ๋“ฑ์œผ๋กœ ์‹œ๊ฐ„๋Œ€๋ณ„ ๋ณ€๋™์„ฑ์ด ํฌ๊ณ  ๊ด€์ธก ์žก์Œ์ด ํ˜ผ์ž… ๋˜๊ธฐ ์‰ฌ์šด ๊ณ„์ ˆ ํŠน์„ฑ์ƒ, ๋‹จ์ˆœ ๊ณต๊ฐ„ํ‰๊ท  ์ž…๋ ฅ์€ ์ด์ƒ๊ฐ’์„ ํฌ์„ํ•ด ์•ˆ์ •์ ์ธ ์‹ ํ˜ธ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์—ฌ๊ธฐ์— Pseudo-Huber ์†์‹ค์€ ์†Œ์˜ค์ฐจ ์˜์—ญ์—์„œ๋Š” MSE์ฒ˜๋Ÿผ ๋ฏธ์„ธ ์˜ค์ฐจ ํ•™์Šต์„ ์ง€์†ํ•˜๊ณ , ๋Œ€์˜ค์ฐจ ์˜์—ญ์—์„œ๋Š” MAE์ฒ˜๋Ÿผ ์ด์ƒ์น˜ ์˜ํ–ฅ์„ ์™„ํ™”ํ•˜๋Š” ์„ฑ์งˆ์„ ๊ฐ€์ ธ, ์—ฌ๋ฆ„์— ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” ์ค‘๊ฐ„ ํฌ๊ธฐ ์˜ค์ฐจ ๋ฐ ๊ฐ€๋” ๋ฐœ์ƒํ•˜๋Š” ํฐ ์˜ค์ฐจ ๊ตฌ์กฐ์— ๊ท ํ˜• ์žˆ๊ฒŒ ๋Œ€์‘ํ•œ๋‹ค. ์ผ์ผ ํ”ผํฌ ๋ณ€๋™์„ฑ์ด ํฐ ๊ตฌ๊ฐ„์—๋„ ํฐ ์˜ค์ฐจ์— ๋Œ€ํ•ด ๊ฐ•๊ฑด์„ฑ์„ ๊ฐ€์ง€๋Š” ํ•™์Šต์— ์˜ํ•ด ํ”ผํฌ์ถ”์ข…์˜ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ชจ์Šต์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค.

IDW ๐‘=1 ๋ฐ Pseudo-Huber๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ–ˆ๋‹ค. ๊ฐ€์„์€ ํ•˜๊ณ„์— ๋น„ํ•ด ๋ณ€๋™ ํญ์ด ์™„๋งŒํ•ด์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋‚˜, ์ผ์‹œ์ ์ธ ํ”ผํฌ ๊ธ‰๋ณ€๋„ ๊ฐ„ํ—์ ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. ๋‚ฎ์€ ๋ณด๊ฐ„๊ฐ•๋„ ๊ฐ’์€ ๋‹ค์ˆ˜ ๊ด€์ธก์ง€์ ์˜ ์‹ ํ˜ธ๋ฅผ ์™„๋งŒํ•˜๊ฒŒ ํ˜ผํ•ฉํ•ด ์žก์Œ์„ ์ค„์ด๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ๊ณ , ์—ฌ๊ธฐ์— Pseudo-Huber์˜ ์ด์ƒ์น˜ ์™„ํ™” ์„ฑ์งˆ์ด ๊ฒฐํ•ฉ๋˜๋ฉด์„œ ์ „๋ฐ˜์  ๊ท ํ˜•์ด ์ตœ์ ํ™”๋œ ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต์—์„œ๋„ ์ „๋ฐ˜์ ์ธ ๋ ˆ๋ฒจ๊ณผ ์ˆœ์œ„ ์ •ํ•ฉ์ด ๋†’๊ณ , ๋“œ๋ฌผ๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ํฐ ์˜ค์ฐจ์ผ์˜ ์˜ํ–ฅ์ด ๊ณผ๋„ํ•˜๊ฒŒ ๋ˆ„์ ๋˜์ง€ ์•Š๋Š”๋‹ค.

๊ฒจ์šธ์€ IDW ๐‘=4 ๋ฐ MAE๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๋ณด์˜€๋‹ค. ์ €๊ณ ๋„ ํƒœ์–‘ ๋ฐ ์–‡์€ ์šด์ธต์˜ ๋น ๋ฅธ ํ†ต๊ณผ ๋“ฑ์œผ๋กœ ๊ตญ์ง€์  ๊ณต๊ฐ„ ๊ตฌ๋ฐฐ๊ฐ€ ๋šœ๋ ทํ•œ ์ƒํ™ฉ์—์„œ, ๊ณ ๊ฐ•๋„ ๋ณด๊ฐ„์ด ์ธ์ ‘ ๊ด€์ธก์†Œ์˜ ์ •๋ณด๋ฅผ ๋” ๊ฐ•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•ด ์‹ค์ œ ๋ณ€๋™์„ ๋ฏผ๊ฐํ•˜๊ฒŒ ํฌ์ฐฉํ•œ๋‹ค. ๋˜ํ•œ ๊ฒจ์šธ์˜ ์˜ค์ฐจ ๋ถ„ํฌ๋Š” ๋น„๊ต์  ํŽธ์ฐจ๊ฐ€ ํฐ ํŽธ์ด๊ธฐ์— MAE์˜ ์„ ํ˜• ๊ฐ€์ค‘์ด ํ‰๊ท  ์„ฑ๋Šฅ์„ ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€ํ•œ๋‹ค. ์ผ๋ณ„ ํ”ผํฌ ๋น„๊ต์—๋„ ๋™์ผํ•˜๊ฒŒ ํฐ ํญ์˜ ํ”ผํฌ ์ƒ์Šนยทํ•˜๊ฐ• ๋‚ ์— ๋ณ€ํ™” ๋ฐฉํ–ฅ๊ณผ ์ƒ๋Œ€์  ํฌ๊ธฐ ์ถ”์ข…์ด ์–‘ํ˜ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜, ํžˆํŠธ๋งต์˜ ์ •๋Ÿ‰ ๊ฒฐ๊ณผ์™€ ์ผ๊ด€๋œ๋‹ค.

๋‹ค์ˆ˜์˜ ๊ณ„์ ˆ ๊ตฌ๊ฐ„์—์„œ MAE๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ•˜์˜€๋‹ค. ์ด๋Š” PV ์‹œ๊ณ„์—ด์˜ ๊ตฌ๋ฆ„ ํ†ต๊ณผ, ๊ธ‰๋ณ€ ์ผ์‚ฌ ๋“ฑ์˜ ์‚ฐ๋ฐœ์  ํฐ ์˜ค์ฐจ ํŠน์„ฑ์—์„œ, ์„ ํ˜• ๊ฐ€์ค‘์„ ์ ์šฉํ•˜๋Š” MAE๊ฐ€ ์†Œ์ˆ˜์˜ ํฐ ์˜ค์ฐจ์— ๊ณผ๋„ํ•˜๊ฒŒ ๋Œ๋ ค๊ฐ€์ง€ ์•Š๋Š” ๊ฐ•๊ฑด์„ฑ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ๋ฐ˜๋ฉด ์—ฌ๋ฆ„/๊ฐ€์„๊ณผ ๊ฐ™์ด ๋ณ€๋™์„ฑ์ด ํฌ๊ฑฐ๋‚˜ ๊ตญ์ง€์  ๊ธ‰๋ณ€์ด ์ž์ฃผ ๊ด€์ธก๋˜๋Š” ๊ตฌ๊ฐ„์—์„œ๋Š” Pseudo-Huber๊ฐ€ ์ตœ์ €๊ฐ’์„ ๋ณด์˜€๋‹ค. ์ด๋Š” Pseudo-Huber๊ฐ€ ์†Œ์˜ค์ฐจ ์˜์—ญ์—์„œ๋Š” ์ œ๊ณฑ ๊ฐ€์ค‘์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๋Œ€์˜ค์ฐจ ์˜์—ญ์—์„œ๋Š” ์ ˆ๋Œ€๊ฐ’ ๊ฐ€์ค‘์œผ๋กœ ์ „ํ™˜ํ•ด, ๋ฏธ์„ธ ์˜ค์ฐจ ํ•™์Šต๊ณผ ์ด์ƒ์น˜ ์–ต์ œ๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ–ˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ์ฆ‰, MAE๋Š” ์ „๋ฐ˜์  ๊ฐ•๊ฑด์„ฑ, Pseudo-Huber๋Š” ๋ณ€๋™์„ฑ ๋†’์€ ๊ณ„์ ˆ์—์„œ์˜ ๊ท ํ˜•์„ฑ์„ ๋ณด์—ฌ, ๊ณ„์ ˆ๋ณ„ ์„ ํƒ ์ตœ์ ํ™”์˜ ํƒ€๋‹น์„ฑ์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ๊ฒฐ๊ณผ๋กœ ์ž‘์šฉํ•œ๋‹ค.

๊ณต๊ฐ„๋ณด๊ฐ• ๊ฐ•๋„์˜ ๊ณ„์ ˆ์„ฑ์— ๋Œ€ํ•ด ๋‚ฎ์€ ๊ฐ•๋„ ๋ฐ ๋†’์€ ๊ฐ•๋„์˜ ๋Œ€ํ•ด ๋†’์€ ๊ฐ•๋„์˜ ๋ณด๊ฐ•์€ ์ธ์ ‘ ๊ด€์ธก์†Œ์˜ ์ •๋ณด๋ฅผ ๊ฐ•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜์—ฌ ๊ฒจ์šธ์˜ ์ €๊ณ ๋„ ํƒœ์–‘, ๋ง‘์Œ/ํ๋ฆผ ๊ธ‰์ „ํ™˜ ๋“ฑ ๊ตญ์ง€์  ๊ธ‰๋ณ€์— ๋Œ€์‘๋ ฅ์ด ๋†’๋‹ค๋Š” ๊ฒƒ์€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๋‚˜ํƒ€๋‚œ ๊ฒจ์šธ์˜ ์ตœ์  ์กฐํ•ฉ์ด IDW p=4๋ผ๋Š” ๊ฒƒ์ด ์ด๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ๋‚ฎ์€ ๋ณด๊ฐ• ๊ฐ•๋„ ๋ฐ ํ‰๊ท  ์ž…๋ ฅ๋ฐ์ดํ„ฐ๋Š” ๊ด€์ธก์†Œ ์ •๋ณด๋ฅผ ์™„๋งŒํ•˜๊ฒŒ ํ˜ผํ•ฉํ•ด ์žก์Œ ์™„ํ™”์— ์œ ๋ฆฌํ•˜๋‹ค. ์žฅ๋งˆ ๋ฐ ๋Œ€๋ฅ˜์„ฑ ๊ตฌ๋ฆ„์˜ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ์—ฌ๋ฆ„์ฒ  ์žฆ์€ ๋ณ€๋™์œผ๋กœ ์ธํ•œ ๊ด€์ธก ์˜ค์ฐจ ์„ž์ž„์ด ํฐ ๊ตฌ๊ฐ„์—์„œ๋Š” ๊ณผ๋„ํ•œ ๊ตญ์ง€ํ™”๋ณด๋‹ค ํ‰๊ท ํ™”๊ฐ€ ์ผ๊ด€๋œ ์‹ ํ˜ธ๋ฅผ ์ œ๊ณตํ•ด ์˜ˆ์ธก ์•ˆ์ •์„ฑ์„ ๋†’์ธ๋‹ค. ์‹ค๋ฌด์ ์œผ๋กœ๋Š” ๋‹จ์ผ ์กฐํ•ฉ ๊ณ ์ •๋ณด๋‹ค๋Š” ๊ณ„์ ˆ๋ณ„ ๋™์  ์„ ํƒ์ด ํ•ฉ๋ฆฌ์ ์ผ ๊ฒƒ์ด๋‹ค. ์ฆ‰, ๊ณ„์ ˆ๋ณ„ ์ตœ์  ์กฐํ•ฉ ์ „๋žต์€ ์ž‘์€ ์ˆ˜์น˜ ๊ฒฉ์ฐจ๋ผ๋„ ํ•˜๋ฃจ์ „ ๊ธ‰์ „ ๋ฐ ์˜ˆ๋น„๋ ฅ ๊ณ„ํš์˜ ์‹ ๋ขฐ๋„์— ๋ˆ„์  ์ด๋“์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์ฃผ ์ง€์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์˜ ํ”ผํฌยท๋žจํ•‘ ๊ตฌ๊ฐ„ ์ถ”์ข…์„ฑ ํ–ฅ์ƒ์„ ๋ชฉ์ ์œผ๋กœ, ๊ณต๊ฐ„ ๋ณด๊ฐ„ ์ „๋žต๊ณผ ์†์‹คํ•จ์ˆ˜ ์„ ํƒ์ด ์˜ˆ์ธก ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ„์ ˆ ๋‹จ์œ„๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค.

๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ ๋ฐ ์ „์ฒ˜๋ฆฌ์— ๊ด€ํ•ด ์ œ์ฃผ ์ง€์—ญ ๋‹ค์ˆ˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์†Œ์˜ ์‹œ๊ฐ„๋ณ„ ๋ฐœ์ „๋Ÿ‰๊ณผ ๊ด€์ธก์ง€์ ์˜ ๊ธฐ์ƒ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ, ์ฃผ๊ฐ„ ํ™œ์„ฑ ์‹œ๊ฐ„๋Œ€๋กœ ํ•™์Šต ๋Œ€์ƒ์„ ์ œํ•œํ•˜์˜€๋‹ค. ์ด๋Š” ๋ฐœ์ „๋Ÿ‰์ด 0์— ์ˆ˜๋ ดํ•˜๋Š” ์‹œ๊ฐ„๋Œ€์—์„œ MAE ๋ถ„๋ชจ ์ถ•์†Œ๋กœ ์ธํ•œ ์˜ค์ฐจ ๋ถ€ํ’€๋ฆผ ๋ฌธ์ œ๋ฅผ ๋ฐฉ์ง€ํ•˜๊ณ , ํ”ผํฌ ๋ฐ ๋žจํ•‘ ๊ตฌ๊ฐ„์˜ ์šด์˜ ์ค‘์š” ๊ตฌ๊ฐ„์„ ์ดˆ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค. ๋˜ํ•œ, ์‹œ๊ณ„์—ด ํŒŒ์ƒ๋ณ€์ˆ˜์™€ ํ•จ๊ป˜, ์žฅ๊ธฐ๊ฐ„ ํ•™์Šต์— ๋”ฐ๋ฅธ ์„ค๋น„ ์šฉ๋Ÿ‰ ๋ณ€ํ™”๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ์‹œ์ ๋ณ„ ์ œ์ฃผ๋„ ์ด ์„ค๋น„์šฉ๋Ÿ‰์„ ์ž…๋ ฅ์— ํฌํ•จํ•˜์˜€๋‹ค.

๋ฐœ์ „์†Œ์™€ ๊ด€์ธก์†Œ์˜ ๊ณต๊ฐ„ ๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ์ž…๋ ฅ์˜ค์ฐจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด, ๊ด€์ธก์ง€์  ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ „์†Œ ์œ„์น˜์˜ ๊ธฐ์ƒ๊ฐ’์„ ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์œผ๋กœ ์ถ”์ •ํ•˜์˜€๋‹ค. ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๋ณด๊ฐ„๋ฒ•์˜ ๊ฑฐ๋“ญ์ œ๊ณฑ ์ง€์ˆ˜ p๋ฅผ 1โ€“5๋กœ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ๊ตญ์ง€์„ฑโ€“ํ‰ํ™œ์„ฑ์˜ ๊ท ํ˜•์„ ํƒ์ƒ‰ํ–ˆ๊ณ , ๊ด€์ธก์ง€์  ๋‹จ์ˆœํ‰๊ท ๋„ ๋น„๊ต๊ตฐ์œผ๋กœ ํฌํ•จํ•˜์—ฌ ์ด 6์ข…์˜ ๊ณต๊ฐ„ ์ž…๋ ฅ์„ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์˜ˆ์ธก ๋ชจ๋ธ์€ XGBoost๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์†์‹คํ•จ์ˆ˜๋Š” MSE, MAE, Pseudo-Huber์˜ 3์ข…์„ ์ฑ„ํƒํ•ด, ํ‰๊ท ์˜ค์ฐจ ์ตœ์†Œํ™”์™€ ์ด์ƒ์น˜ ์™„ํ™” ์‚ฌ์ด์˜ ์ ˆ์ถฉ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ํ•™์Šต ๊ธฐ๊ฐ„์€ 2020๋…„ 1์›”๋ถ€ํ„ฐ 2023๋…„ 5์›”๊นŒ์ง€, ๊ฒ€์ฆ ๊ธฐ๊ฐ„์€ 2023๋…„ 6์›”๋ถ€ํ„ฐ 2024๋…„ 5์›”๊นŒ์ง€๋กœ ์„ค์ •ํ•˜์˜€๊ณ , ๊ฒ€์ฆ์€ 3๊ฐœ์›” ๋‹จ์œ„์˜ ๊ณ„์ ˆ ๊ตฌ๊ฐ„์œผ๋กœ ๋ถ„ํ• ํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์„ฑ๋Šฅ์ง€ํ‘œ๋Š” ๋น„๊ต์˜ ์ผ๊ด€์„ฑ์„ ์œ„ํ•ด nMAE๋ฅผ ์ฃผ์ง€ํ‘œ๋กœ ์‚ผ์•˜๋‹ค.

6์ข… ๊ณต๊ฐ„์ž…๋ ฅ ๋ฐ 3์ข… ์†์‹คํ•จ์ˆ˜์˜ 18๊ฐœ ์กฐํ•ฉ์„ ๋™์ผ ์กฐ๊ฑด์œผ๋กœ ํ•™์Šตยท๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋ด„์—๋Š” IDW ๐‘=4 ๋ฐ MAE๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ. ์ด๋Š” ๊ตญ์ง€ ๊ตฌ๋ฐฐ๊ฐ€ ๋šœ๋ ทํ•œ ๋‚ ๊ณผ ์žก์Œ์ผ์ด ํ˜ผ์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ MAE์˜ ๊ฐ•๊ฑด์„ฑ์ด ์œ ๋ฆฌํ•จ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์—ฌ๋ฆ„์˜ ๊ฒฝ์šฐ Average ๋ฐ Pseudo-Huber๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, ํ‰๊ท  ์ž…๋ ฅ์ด ์žก์Œ์„ ์™„ํ™”ํ•˜๊ณ , Huberํ˜• ์†์‹ค์ด ์†Œ์˜ค์ฐจ ๋ฐ ๋Œ€์˜ค์ฐจ๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ์ฒ˜๋ฆฌํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๊ฐ€์„์€ IDW ๐‘=1 ๋ฐ Pseudo-Huber๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ ์ด๋Š” ์™„๋งŒํ•œ ๊ณ„์ ˆ ๋ณ€๋™์— ์ €๊ฐ•๋„ ๋ณด๊ฐ„๊ณผ Huber์˜ ๊ฒฐํ•ฉ์ด ํšจ๊ณผ์ ์ž„์„ ๋ณด์ธ๋‹ค. ๊ฒจ์šธ์˜ IDW ๐‘=4 ๋ฐ MAE๊ฐ€ ์ตœ์ € nMAE๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ตญ์ง€ ๊ธ‰๋ณ€ ๋Œ€์‘์„ ์œ„ํ•œ ๊ณ ๊ฐ•๋„ ๋ณด๊ฐ„๊ณผ MAE์˜ ์ผ๊ด€์„ฑ์ด ๊ฒฐํ•ฉ๋œ ๊ฒฐ๊ณผ๋กœ ๋ถ„์„๋œ๋‹ค.

์ƒ์œ„ 3๊ฐœ ์กฐํ•ฉ ๊ฐ„ nMAE ์ฐจ์ด๋Š” ๋Œ€๋ถ€๋ถ„ 0.03โ€“0.24%p๋กœ ๊ทผ์†Œํ•˜๋‚˜, ๊ณ„์ ˆ๋ณ„ ์ตœ์ ์ ์˜ ํŒจํ„ด์€ ์ผ๊ด€๋˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์—ฐ์ค‘ ๋‹จ์ผ ๋ชจ๋ธ ๊ณ ์ •๋ณด๋‹ค ๊ณ„์ ˆ๋ณ„ ์ตœ์  ์กฐํ•ฉ์˜ ๋™์  ์ ์šฉ์ด ํ•ฉ๋ฆฌ์ ์ž„์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ณ„์ ˆ ์ „ํ™˜ ์‹œ์ ์— ๋งž์ถ˜ ๋ชจ๋ธ ์ „ํ™˜์„ ํ†ตํ•ด ํ”ผํฌ ๋ฐ ๋žจํ•‘ ๊ตฌ๊ฐ„์˜ ์˜ˆ์ธก ์‹ ๋ขฐ๋„๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ํ•˜๋ฃจ์ „ ๊ธ‰์ „ ๊ณ„ํš์˜ ์˜ˆ๋น„๋ ฅ ๋ฐฐ๋ถ„๊ณผ ์ถœ๋ ฅ์ œ์–ด ์˜์‚ฌ๊ฒฐ์ •์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์„๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณต๊ฐ„์  ๋ถˆ์ผ์น˜์— ๋Œ€ํ•œ ๋ณด๊ฐ„ ๋ฐฉ๋ฒ•์œผ๋กœ kriging, ์ˆ˜์น˜์˜ˆ๋ณด ๋“ฑ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ๋ณด๊ฐ•ํ•œ ์ž…๋ ฅ ํ™œ์šฉ์ด ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ ์ œ์ฃผ๋„ ๋‚ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ๋ฐ€์ ‘ํ•œ ์ผ์‚ฌ๋Ÿ‰ ๋ฐ ์ผ์กฐ๋Ÿ‰์„ ์ œ๊ณตํ•˜๋Š” ๊ด€์ธก์†Œ๊ฐ€ ์ œํ•œ์ ์ด๋ฏ€๋กœ, ์ถฉ๋ถ„ํ•œ ๊ธฐ์ƒ๊ด€์ธก์†Œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ™•๋ณด๋  ๊ฒฝ์šฐ ๋”์šฑ ๊ณ ๋„ํ™”๋œ ์—ฐ๊ตฌ๊ฐ€ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค.

Acknowledgements

This paper was written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2025

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (RS-2025-02422969).

References

1 
2025, The 11th Basic Plan of Long-Term Electricity Supply and DemandGoogle Search
2 
Jwaone Gaboitaolelwe, Murtala Adamu Zungeru, Abid Yahya, Caspar Lebekwe, Dasari Naga Vinod, Ayodeji Salau, 2023, Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison, IEEE AccessDOI
3 
M. Abuella, B. Chowdhury, 2019, Forecasting of solar power ramp events: A post-processing approach, Renewable Energy, Vol. 133, pp. 1380-1392DOI
4 
C. Brancucci Martinez-Anido, B. Botor, A. R. Florita, C. Draxl, S. Lu, H. F. Hamann, B-M. Hodge, 2016, The value of day-ahead solar power forecasting improvement, Solar Energy, Vol. 129, pp. 192-203DOI
5 
, XGBoost ParametersGoogle Search
6 
Yuanchao Wang, Z. Pan, J. Zheng, L. Qian, Li Mingtao, 2019, A hybrid ensemble method for pulsar candidate classification, Astrophysics and Space Science, Vol. 364DOI
7 
Sung-Hee Lee, Woo-Nam Lee, Sang Woo Shim, Jong Jip Won, Yu Jeong Yang, Jong-Bae Park, 2023, A Short-Term Forecasting Method for Korean REC Spot Market Price Using AI-based Statistical Methodologies, The transactions of The Korean Institute of Electrical Engineers, Vol. 72, No. 9, pp. 967-974DOI
8 
Dohyun Kim, Ho Jin Jo, Myung Su Kim, Jae Hyung Roh, Jong-Bae Park, 2019, Short-Term Load Forecasting Based on Deep Learning Model, The transactions of The Korean Institute of Electrical Engineers, Vol. 68, No. 9, pp. 1094-1099DOI
9 
Jin Soo Lee, Sang Woo Shim, Jong-Bae Park, Jae Hyung Roh, 2025, Study on Improving Photovoltaic Power Generation Forecast Accuracy Using Inverse Distance Weighting Interpolation, pp. 38-39Google Search
10 
Sang Woo Shim, Da Han Lee, Jae Hyung Roh, Jong-Bae Park, 2022, A Machine Learning Based Algorithm for Short-Term Weekends Load Forecasting, The transactions of The Korean Institute of Electrical Engineers, Vol. 71, No. 11, pp. 1578-1584DOI
11 
Y. K. Semero, J. Zhang, D. Zheng, 2018, PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression based feature selection strategy, CSEE Journal of Power and Energy Systems, Vol. 4, No. 2, pp. 210-218DOI
12 
Tolulope Olumuyiwa Falope, Liyun Lao, Dawid Hanak, 2024, A Three-Step Weather Data Approach in Solar Energy Prediction Using Machine Learning, Renewable Energy Focus, Vol. 50DOI
13 
Doo Sung Choi, Ye Ji Lee, MyeongJin Ko, 2022, Utilization and Verification of Inverse Distance Weighting (IDW) Interpolation Technology for Predicting Solar Radiation of Photovoltaic System, KIEAE Journal, Vol. 22, No. 1, pp. 5-12DOI
14 
D. F. Watson, G. M. Philip, 1985, A Refinement of Inverse Distance Weighted Interpolation, Geoprocessing, Vol. 2, pp. 315-327Google Search
15 
W. F. Holmgren, Solar Forecast Arbiter: An open-source evaluation framework for solar forecastingGoogle Search
16 
S.-G. Kim, J.-Y. Jung, M. K. Sim, 2019, A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data Using Machine Learning, Sustainability, Vol. 11DOI
17 
Regional 5-Minute Solar Power Generation Data, Open Data PortalGoogle Search
18 
Status of Solar Power Plants in Jeju, Open Data PortalGoogle Search
19 
Automated Surface Observing System Data, Open MET Data PortalGoogle Search
20 
Jaehong Whang, Sung-kwan Joo, 2024, Solar power generation Prediction based on XGBoost and an Analysis of Profit structure in Renewable Energy Bidding system, pp. 1012-1013Google Search

์ €์ž์†Œ๊ฐœ

์ด์ง„์ˆ˜(Jinsoo Lee)
../../Resources/kiee/KIEE.2026.75.1.36/au1.png

He received B.S. degree in Electrical and Electronics Engineering from Konkuk University in 2025 and is currently pursuing the M.S. degree with the Department of Electrical Engineering.

์‹ฌ์ƒ์šฐ(Sangwoo Shim)
../../Resources/kiee/KIEE.2026.75.1.36/au2.png

He received B.S. degree and M.S. in electrical engineering from Konkuk University in 2022 and 2023, respectively, where he is currently pursuing the Ph.D. degree with the Department of Electrical Engineering.

๋ฐ•์ข…๋ฐฐ(Jong-Bae Park)
../../Resources/kiee/KIEE.2026.75.1.36/au3.png

He received B.S., M.S., and Ph.D. degrees in Electrical Engineering from Seoul National University in 1987, 1989, and 1998, respectively. Currently, he is with the Department of Electrical Engineering at Konkuk University, Seoul, Korea.

๋…ธ์žฌํ˜•(Jae Hyung Roh)
../../Resources/kiee/KIEE.2026.75.1.36/au4.png

He received B.S. degree in nuclear engineering from Seoul National University, Seoul, South Korea, in 1993, the M.S. degree in electrical engineering from Hongik University, Seoul, South Korea, in 2002, and the Ph.D. degree in electrical engineering from Illinois Institute of Technology, Chicago IL, USA, in 2008. Currently, he is with the Department of Electrical Engineering at Konkuk University, Seoul, Korea.