• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Meng Q., Qu L., 1991, Rotating machinery fault diagnosis using Wigner distribution, Mechanical Systems and Signal Processing, Vol. 3, pp. 155-166DOI
2 
Feng Z., Zuo M. J., October. 2012, Vibration signal models for fault diagnosis of planetary gearboxes, Journal of Sound and Vibration, Vol. 331, No. 22, pp. 4919-1939DOI
3 
Yu D., Yang Y., Cheng J., November-December. 2007, Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis, Measurment, Vol. 40, No. 9-10, pp. 823-830DOI
4 
Sun J. W., Wyss R., Steinecker A., Glocker P., April 2014, Automated fault detection using deep belief networks for the quality inspection of electromotors, Technisches Messen, Vol. 81, pp. 255-263DOI
5 
Shao S., Sun W., Wang P., Gao Robert X., Yan R., 2016, Learning features from vibration signals for induction motor fault diagnosis, 2016 International Symposium on Flexible Automation, pp. 71-76DOI
6 
Li W., Zhang S., He G., May 2013, Semisupervised distance- preserving selforganizing map for machine-defect detection and classification, IEEE Trans. Instrum Meas, Vol. 62, No. 5, pp. 869-879DOI
7 
Park C. J., Seo K., 2010, A Study on the Accuracy Improvement of Acoustic Analysis of the EV Motor, The Korean Society for Noise and Vibration Engineering Fall Conference, pp. 348-349Google Search
8 
Simonyan K., Zisserman A., 2015, Very deep convolutional networks for large-scale image recognition, International Conference on Learning Representations (ICLE)Google Search
9 
Geman S., Bienenstock E., 1992, Neural networks and the bias/variance dilemma, Neural Computation, Vol. 4, No. 1, pp. 1-58DOI