• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
KB Financial group “2023 Korea Pet Report,” 2023.URL
2 
D. G. O’Neill, et al., “Commonly diagnosed disorders indomestic cats in the UK and their associations with sex and age,” Journal of Feline Medicine and Surgery, vol. 12(1), 2023. https://doi.org/10.1177/1098612X231155016DOI
3 
L. J. Vogelnest, “Skin as a marker of general feline health: cutaneous manifestations of systemic disease,” Journal of feline medicine and surgery, vol. 19, no. 9, pp. 948-960, 2017. https://doi.org/10.1177/1098612X177232DOI
4 
A. Hussain, S. Ali, M. I. Joo & Kim. H. C, “A Deep Learning Approach for Detecting and Classifying Cat Activity to Monitor and Improve Cat's Well-being using Accelerometer, Gyroscope, and Magnetometer,” IEEE Sensors Journal, pp. 1996-2008, 2023. https://doi.org/10.1109/JSEN.2023.3324665DOI
5 
L. Nanni, G. Maguolo & M. Paci, “Data augmentation approaches for improving animal audio classification,” Ecological Informatics, vol. 57, article no. 101084, 2020. https://doi.org/10.1016/j.ecoinf.2020.101084DOI
6 
T. Banzato, M. Wodzinski, F. Tauceri, C. Donà, F. Scavazza, H. Müller & A. Zotti, “An AI-based algorithm for the automatic classification of thoracic radiographs in cats,” Frontiers in veterinary science, vol. 8, article no. 731936, 2021. https://doi.org/10.3389/fvets.2021.731936DOI
7 
M. G. Nam & S. Y. Dong, “Classification of companion animals' ocular diseases: Domain adversarial learning for imbalanced data,” IEEE Access, vol. 11, pp. 143948-143955, 2023. https://doi.org/10.1109/ACCESS.2023.3344579DOI
8 
A. Haghofer, A. Fuchs-Baumgartinger, K. Lipnik, R. Klopfleisch, M. Aubreville, J. Scharinger & C. A. Bertram, “Histological classification of canine and feline lymphoma using a modular approach based on deep learning and advanced image processing,” Scientific Reports, vol. 13, no.1, article no. 19436, 2023. https://doi.org/10.1038/s41598-023-46607-wDOI
9 
A. M. Bapi, N. Nabi, S. A. R. Shuvo, P. Chakraborty & S. A. Khushbu, “CatEarMites: An Approach of Detecting Ear Mites of Cat Using Convolutional Neural Network,” Proceedings of the 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2022. https://doi.org/10.1109/ICCCNT54827.2022.9984559DOI
10 
AI Open Innovation Hub, “Pet Skin Disease data,” http://www.aihub.or.kr/URL
11 
M. Tan, Q. Le, “EfficientNetV2: Smaller Models and Faster Training,” arXiv preprint arXiv:2104.00298, 2021.DOI
12 
M. Tan, Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” arXiv preprint arXiv:1905.11946, 2019.URL
13 
B. Zoph & Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv preprint arXiv:1611.01578, 2016. https://doi.org/10.48550/arXiv.1611.01578DOI
14 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan and Q. V. Le, “Autoaugment: Learning augmentation strategies from data,” In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 113-123, 2019.URL
15 
H. Zhang, M. Cisse, Y. N. Dauphin & D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017. https://doi.org/10.48550/arXiv.1710.09412DOI
16 
D. Hendrycks, N. mu, E. D. Cubuk, B. Zoph, J. Gilmer & B. Lakshminarayanan, “Augmix: A simple data processing method to improve robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2019. https://doi.org/10.48550/arXiv.1912.02781DOI
17 
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh & D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 618-626, 2017.URL
18 
A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” arXiv preprint arXiv:1803.08375, 2018. https://doi.org/10.48550/arXiv.1803.08375DOI